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Goal: study YSOs as function of age in relation to dust
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Sample  union of targeted searches=̂



YSOs in Orion SF region

217 papers on YSOs  
identified in Orion 

Roquette+2025



Inhomogenious selection function
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Can ML help?

McBride et al. (2021) McBride+2021



Ways to improve ML YSO catalog



Ways to improve ML YSO catalog

• Data fusion: use as many informative data sets as possible

Aim to be truely multi-survey Often works focus  
on intersection



Untapped potential of current methods

MIR

NIR

Optical

X-ray

Birth 60 Myr



Many different YSO tracers data souces 
• IR-excess from disk


• Lithium Depletion: Li I (λ6708Å) line


• Gravity tracers (weaker logg comp. to MS star)

• Either med to high-R spectra or EW of absorption lines from logg (e.g., Na I, K I, TiO, CaH 3)


• Emission lines from accretion process 

• Hα line - indicated also by increased chromospheric activity, or Balmer (Opt), Paschen or 

Brackett (IR), He I, Ca II near-IR triplet

• Optical and IR veiling 

• Excess flux from high-temperature material in inner disc regions

• dilutes photospheric spectral lines & enhances spectral continuum


• Variability 
• Seen e.g. in larger mean flux uncertainties in multi-epoch photometry


• Increased X-ray emission & stellar rotation



• Data fusion: use as many informative data sets as possible

Gaia 
2MASS 
WISE 
LAMOST

 
WISE 
Spitzer 
APOGEE
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• Data fusion: use as many informative data sets as possible


• Provide well-calibrated posteriors over stellar parameters given 
spectra & photometric observations


• Scale inference to > 1M — 1B stars

 Simulation-based inference for incomplete, multi-survey data→

Ways to improve ML YSO catalog



Model implementation
I. SBI model
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Typical ML regression

⃗θ⃗x

…learnable parametersϕ

Series of learnable affine transformations of   
followed by pointwise non-linear map:  

⃗x
fϕ( ⃗x) = ̂θ
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Typical ML regression

However: 
                

BUT: if we have access to a simulator, we can approximate p( ⃗θ ∣ ⃗x)

 —  might not be tractablep( ⃗x ∣ ⃗θ)
 —  might not scale to millions - billions of “runs”p( ⃗θ ∣ ⃗x)

⃗θ⃗x Neural net  

Would like to have  p( ⃗θ ∣ ⃗x)



Simulation based inference (SBI) setup

© Siddharth Mishra-Sharma



Neural posterior estimation

ML regression⃗θ⃗x Neural net (NN) 



Neural posterior estimation

p( ⃗θ ∣ s) ∼ p( ⃗θ ∣ ⃗x)⃗x NN   
(summary statistics)

fϕ( ⃗x) = s
Conditional 
neural density 
estimator  

ML regression

Papamakarios & Murray (2016)  & Lueckmann et al. (2017)
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Neural posterior estimation

p( ⃗θ ∣ s) ∼ p( ⃗θ ∣ ⃗x)⃗x NN   
(summary statistics)

fϕ( ⃗x) = s
Conditional 
neural density 
estimator  

ML regression

Papamakarios & Murray (2016)  & Lueckmann et al. (2017)

⃗θ⃗x Neural net (NN) 

Cannot handle missing data



Transformer: learning with incomplete data

Transformer

Gloeckler et al. (2024)

Conditional mask: MC

Model trained to allow for arbitrary conditioning

( ⃗x, ⃗θ)



p( ⃗x, ⃗θ)

Transformer: learning with incomplete data

Transformer

Conditional mask: MC

Model trained to allow for arbitrary conditioning

( ⃗x, ⃗θ)

— condition joint only on actually observed quantities 

Learn joint pdf &  
take arbitrary condtionals

Gloeckler et al. (2024)



Conditional density  
estimator (flow matching) p( ⃗θ ∣ ⃗x)Transformer⃗x

Attention masking: ME

Flow matching: time-dependent vector field

© By Tor Fjelde, Emile Mathieu, Vincent Dutordoir (https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html)
© Alec Helbling (https://alechelbling.com/Diffusion-Explorer/)

https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html
https://alechelbling.com/Diffusion-Explorer/
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3D toy example

Coefficient vector: additional input

Flow not well constrained in 
low data regime 

Guidance term towards physical  
manifold in low data regime

Training data
Samples from learned joint

Baldan+2025; Bastek+2025 
ℒ = wFMℒFM + wRℒR

ℒR = f(x1, …, xn)

E.g.: f(x1, …, xn) = x2
1 + x2

2 + x2
3



Guidance via measurement operator constraints
ℒR = f(x1, …, xn)

fi = a(d, R⋆)∫ ki(λ) A(λ; AV, RV) s(λ; Teff, logg, Z, t⋆) d log λ

Flux in band i Passband filter

AttenuationAmplitude

intrinsic surface SED



Guidance via measurement operator constraints
ℒR = f(x1, …, xn)

[μ(λ) + ∑
m

cmϕm(λ)]

fi = a(d, R⋆)∫ ki(λ) A(λ; AV, RV) s(λ; Teff, logg, Z, t⋆) d log λ

p( ⃗x, ⃗θ, ⃗c)



Pilot study



• Galaxia code

• Galactic structure + 

kinematics, SFH + 
chemistry evolution


• thin+thick+halo+bulge

Clusters/young stars Milky Way model

Nstars

θC

θS

θS



Fwd model

Specta

Instrument resp.

TeffL MS

GBPGRPG KHJ
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Example: low mass star
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Example: high mass star
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Adding the guidance term



With guidance

Median
True
1σ

Median
True
1σ



With guidance



Pilot study (Gaia + 2MASS + Av) 



Summary

• SBI model using flow matching + transformer model to 
learn arbitrary conditionals  

• Guidance via measurement operator constraints


• Obtain promising results on simulations



Thank you


