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ABSTRACT

We present a new clustering method, significance mode analysis (SigMA), for extracting co-spatial and co-moving stellar populations
from large-scale surveys such as ESA Gaia. The method studies the topological properties of the density field in the multidimensional
phase space. We validated SigMA on simulated clusters and find that it outperforms competing methods, especially in cases where
many clusters are closely spaced. We applied the new method to Gaia DR3 data of the closest OB association to Earth, Scorpio-
Centaurus (Sco-Cen), and find more than 13 000 co-moving young objects, about 19% of which have a substellar mass. SigMA finds
37 co-moving clusters in Sco-Cen. These clusters are independently validated by their narrow Hertzsprung-Russell diagram sequences
and, to a certain extent, by their association with massive stars too bright for Gaia, and are hence unknown to SigMA. We compared
our results with similar recent work and find that the SigMA algorithm recovers richer populations, is able to distinguish clusters with
velocity differences down to about 0.5 km s−1, and reaches cluster volume densities as low as 0.01 sources pc−3. The 3D distribution
of these 37 coeval clusters implies a larger extent and volume for the Sco-Cen OB association than typically assumed in the literature.
Additionally, we find the association more actively star-forming and dynamically complex than previously thought. We confirm that
the star-forming molecular clouds in the Sco-Cen region, namely, Ophiuchus, L134/L183, Pipe Nebula, Corona Australis, Lupus, and
Chamaeleon, are part of the Sco-Cen association. The application of SigMA to Sco-Cen demonstrates that advanced machine learning
tools applied to the superb Gaia data allows an accurate census of the young populations to be constructed, which in turn allows us to
quantify their dynamics and recreate the recent star formation history of the local Milky Way.
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1. Introduction
The ESA Gaia mission (Gaia Collaboration 2016, 2018, 2021,
2023a) is transforming our knowledge of the local Milky
Way, particularly in regards to the distribution of young stel-
lar populations. However, disentangling and extracting coeval
populations remains notoriously difficult. This is reflected
in the wide variety of methods applied to the Gaia data
(e.g., Oh et al. 2017; Kushniruk et al. 2017; Zari et al. 2017,
2019; Castro-Ginard et al. 2018; Cantat-Gaudin et al. 2018a;
Galli et al. 2018; Damiani et al. 2019; Meingast et al. 2019,
2021; Kounkel & Covey 2019; Chen et al. 2020; Hunt & Reffert
2021; Olivares et al. 2021). This wide range reflects the
rather complex feature space1 from where the stellar popu-
lations are extracted. Firstly, these initially compact objects
are stretched into elongated, sometimes non-convex structures
? Full Table E.1 is only available at the CDS via anonymous

ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/677/A59
?? Interactive Figs. 10, 12, and 13 are available at https://www.
aanda.org
1 Stars in the data set are represented as points in a 5D or 6D space
with three positional axes and two or three kinematic axes. In a machine
learning context, this space is referred to as feature space. The term
“feature” is synonymous with dimension or coordinate axis.

in position space as a consequence of interactions with the
Milky Way potential, spiral arms, and giant molecular clouds
(e.g., Kamdar et al. 2021). This “galactic stretching” leads to
a variety of cluster2 shapes, from compact (when young) to
low-contrast, spread-out, sometimes S-shaped clusters domi-
nated by Milky Way tidal forces (e.g., Meingast & Alves 2019;
Röser et al. 2019; Meingast et al. 2019, 2021; Beccari et al.
2020; Kounkel & Covey 2019; Jerabkova et al. 2019, 2021;
Ratzenböck et al. 2020; Kerr et al. 2021; Kamdar et al. 2021).
Secondly, due to the low number of available radial veloci-
ties, about 2% in the Gaia Data Release 3 (DR3) database
(Gaia Collaboration 2023a; Katz et al. 2023), one is, for the most
part, restricted to two tangential velocity axes plus the spa-
tial three-coordinate axes derived from Gaia positions, paral-
laxes, and proper motions (5D phase space). Thus, even under
the assumption of perfectly Gaussian-distributed 3D velocities
within clusters, the projection on the sky distorts the multivari-
ate Gaussian (5D space) into arbitrary shapes depending on the

2 In this paper we use the word “cluster” in the statistical sense,
namely, an enhancement over a background. This avoids creating a new
word for spatially and kinematically coherent structures we find in Sco-
Cen. None of the Sco-Cen clusters are expected to be gravitationally
bound.
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orientation, distance, and size of the stellar cluster. To make mat-
ters worse, stellar cluster members constitute a minute subset
of the Gaia data, with unrelated field stars creating background
noise that is not easily removable in the 5D space. Thus, the
feature space consists of stellar clusters of various shapes and
densities embedded in a sea of noise.

To tackle the challenge of identifying subpopulations in a star-
forming region, we have developed a method that analyzes the
topological structure of the 5D density field spanned by 3D posi-
tions and 2D tangential velocities. We applied a fast modality test
procedure that introduces a measure of significance to peaks in the
density distribution, thus providing an interpretable cluster defini-
tion. This clustering method is called significance mode analysis,
or SigMA, and it is designed to extract co-spatial and co-moving
stellar populations from large-scale surveys such as ESA Gaia.

The goal of this paper is to present the SigMA method and
apply it to the Scorpius-Centaurus (Sco-Cen) OB association
(Kapteyn 1914; Blaauw 1946, 1952, 1964a,b) to identify the dif-
ferent subpopulations and compare results to recent papers with
similar goals. Sco-Cen is the closest and best studied OB stellar
association (e.g., de Geus et al. 1989; de Geus 1992; de Bruijne
1999; Preibisch & Zinnecker 1999; de Zeeuw et al. 1999; Lépine
& Sartori 2003;; Preibisch & Mamajek 2008; Makarov 2007a,b;
Diehl et al. 2010; Pöppel et al. 2010; Rizzuto et al. 2011;
Pecaut et al. 2012; Pecaut & Mamajek 2016; Forbes et al. 2021)
and has an age of.20 Myr (Pecaut et al. 2012). These and many
other papers in the literature have established Sco-Cen as an
important laboratory for star formation, for the characterization of
stellar associations, and for understanding the impact of massive
stars on the interstellar medium and planet formation. Since the
advent of large-scale astrometric data from the ESA Gaia mission,
which started to become available in 2016 (Gaia Collaboration
2016), there has been a renewed interest in this benchmark
region, with a focus on the kinematics and 3D structure of the
association (Villa Vélez et al. 2018; Wright & Mamajek 2018;
Goldman et al. 2018; Damiani et al. 2019; Luhman & Esplin
2020; Grasser et al. 2021; Squicciarini et al. 2021; Kerr et al.
2021; Luhman 2022; Schmitt et al. 2022; Miret-Roig et al. 2022a;
Briceño-Morales & Chanamé 2023).

In this paper we present the method SigMA in Sect. 3, using
Gaia DR3 data (Sect. 2), and validate it in Sect. 4. In Sect. 5 we
present an application of SigMA to Sco-Cen, including compar-
isons to previous work (Sect. 5.2). In Sect. 6 we summarize our
findings.

2. Data

In this work we apply the newly developed method presented
in this paper, SigMA, to Gaia DR3 data at and around the
Sco-Cen OB association. To this end, we select a box of about
1.5 × 107 pc3 from the Gaia DR3 Archive (Gaia Collaboration
2023a), which extends well beyond the traditional and well-
studied Sco-Cen regions. Several hints in the literature sug-
gest that the Sco-Cen OB association is a larger complex than
traditionally defined by Blaauw (1964a). It includes several
star-forming regions that have originally not been assigned
to Sco-Cen (e.g., Lépine & Sartori 2003; Sartori et al. 2003;
Bouy & Alves 2015; Kerr et al. 2021; Zucker et al. 2022). The
box is defined in a heliocentric Galactic Cartesian coordinate
frame (XYZ) within
− 50 pc < X < 250 pc
− 200 pc < Y < 50 pc (1)
− 95 pc < Z < 100 pc.

The 3D space positions (XYZ) are derived from the Gaia DR3
positions right ascension (α, deg) and declination (δ, deg), and
the parallax ($, mas). The distance (d, pc) is estimated from the
inverse of the parallax, which is a fairly good approximation of
the distance for sources within 200 pc and with low uncertainties
(see also Appendix A). The box contains in total 5 587 760 Gaia
sources when additionally requiring $ > 0 mas. To reduce the
influence of spurious measurements, we applied the following
quality criteria to the Gaia DR3 data within the selected box:

fidelity_v2 > 0.5
$/σ$ ≡ parallax signal-to-noise (S/N$) (2)
S/N$ > 4.5.

The parameter fidelity_v2 is a classifier to identify spurious
sources in the Gaia DR3 and EDR3 (Gaia Collaboration 2021)
catalogs, developed by Rybizki et al. (2022), which can be used
to select high fidelity astrometry. The parallax_over_error
cut (similar to an S/N threshold) reduces additional uncertain-
ties in distance. This leaves 980 348 sources inside the box out
of 5 587 760 (∼18%) to which we applied the SigMA clustering
algorithm, which we describe in Sect. 3. In Appendix A we give
more details on data retrieval and the choice of the quality crite-
ria. In this paper, the methodology is validated using data with
the mentioned quality criteria applied; therefore, if using differ-
ent criteria, the completeness and contamination estimates (see
Sects. 3.5.4, 4.2, and Appendix D) could change as well. Using
sources not fulfilling these quality criteria would require updated
validation alongside new completeness and contamination esti-
mates.

The clustering is primarily done in the 5D phase space,
using the 3D spatial coordinates XYZ in parsecs, and the 2D
tangential velocities vα and vδ in km s−1, as derived from the
observed proper motions (µ∗α = µα cos(δ), µδ) and parallaxes
(see Appendix A). The Sun’s reflex motion strongly influences
the tangential velocities vα, vδ. If this is not accounted for, the
distribution of Sco-Cen members in tangential velocity space
is strongly correlated and depends on a cluster’s position and
apparent size (see Fig. C.1). Such nonlinear relationships con-
tradict a central underlying assumption of many clustering algo-
rithms. These clustering methods assume a universally valid
metric, which implies a global correlation behavior (e.g., the
commonly used Euclidean norm assumes no correlation between
input features). To avoid formulating a locally adaptive met-
ric, we transform tangential velocities to velocities relative to
the local standard of rest (LSR), written as vα,LSR and vδ,LSR in
km s−1. This transformation reduces the influence of the reflex
motion of the Sun.

We used the barycentric standard solar motion relative to the
LSR from Schönrich et al. (2010), while there are different val-
ues in the literature, which would give slightly different resulting
motions (e.g., Kerr & Lynden-Bell 1986; Francis & Anderson
2009, see also Appendix C in Großschedl et al. 2021). However,
the differences are only marginal and irrelevant for our purposes
since the main goal is to reduce the strong positional correlation,
which is applied consistently to all stars when deciding on one
standard Solar motion correction. The effect of the transforma-
tion on tangential velocities is highlighted in Appendix C. The
LSR conversion of the proper motions is accomplished with
Astropy, as outlined in Appendix A. Finally, the different dimen-
sions are scaled to each other, as described in the methods in
Sect. 3.3.3.

The final clustering result is obtained from the 5.5D space
since we include Gaia radial velocities (Katz et al. 2023), when
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available, to remove possible field star contamination, as out-
lined in Sect. 3.5. In this cleaning step, we assign approximate
radial velocities (vr) to all stars in a minimization procedure
involving the hypothetical cluster bulk motion. While this proce-
dure also works without access to vr measurements (see details
in Sects. 3.5.2 and 3.5.3), we find in simulations that ≥5% of vr
measurements are necessary to achieve no loss in accuracy (see
Appendix B.4). Hence, we refer to the used dimensions as the
5.5D space, since vr are added if available in Gaia DR3. Gaia
DR3 only includes vr for about 2% of the sources with paral-
laxes (or about 20% in the selected Sco-Cen box if consider-
ing sources with σvr < 2 km s−1). Adding auxiliary vr data from
other surveys would improve the statistics but lead to a very
inhomogeneous data sample with 6D phase space information.
Therefore, we restrict our clustering procedure to the so-called
5.5D phase space, as provided by Gaia, allowing us to create a
homogeneous and more complete overview of the existing clus-
ters in regions like Sco-Cen. Moreover, by focusing on the 5.5D
phase space, we can create a method that does not strongly rely
on radial velocity information, which can be used more widely
on larger data samples.

3. Methods

In this section we first give a brief overview of the basic defini-
tions of several widely used clustering algorithms, which leads
to detailed explanations on the buildup of the SigMA clustering
algorithm in Sect. 3.2, as developed in this work3. An in-depth
description of related work underlying SigMA can be found in
Appendix B.1.

3.1. Clustering algorithms: A brief review

Understanding the Milky Way, or any object in the Universe, is
directly linked to the quantity and quality of the available data.
Nowadays, the biggest effort is no longer data collection, but the
large sample sizes and high dimensionality significantly impact
all parts of the analysis pipeline – storage, processing, mod-
eling, and interpretation. “Big data” usually contain extensive
information, diversity, and complexity; thus, we require more
complex methods to model its observations. However, many tra-
ditional analysis techniques have time and memory complexi-
ties that fail to perform under millions or even billions of data
samples (Ashok Kumar 2020). Consequently, many studies start
with an exhaustive pre-filter step to improve downstream analy-
ses (e.g., Zari et al. 2019; Kerr et al. 2021).

To deal with large complex data, new interpretive methods
need to be tailored to the particular scientific question, in our
case, identifying co-moving and coeval clusters of stars inside
the 1+ billion stars in the Gaia archive. Clustering analysis, or
unsupervised machine learning, has recently become essential
to identifying coeval stellar structures. Clustering aims to obtain
an organization of data points into meaningful clusters. How-
ever, due to the lack of labeled data, partitioning into “meaning-
ful” clusters is generally an ill-posed problem (Cornuéjols et al.
2018). The algorithm’s choice and parameters must match the
problem at hand. Clustering methods can generally be split into
space partitioning algorithms (e.g., K-Means, MacQueen 1967),
hierarchical algorithms (e.g., single linkage clustering, Johnson
1967), density-based techniques (e.g., DBSCAN; Ester et al.
1996), and model-based or parametric clustering algorithms

3 The source code is publicly available via GitHub under: https://
github.com/ratzenboe/SigMA.

(e.g., expectation maximization; Dempster et al. 1977). An
introduction to cluster analysis and classical methods is avail-
able, for example, in Jain et al. (1999).

From this list of clustering methods, parametric clustering
algorithms and density-based methods are commonly used on
astronomical data sets (Kuhn & Feigelson 2019; Hunt & Reffert
2021, 2023). In the following, we give an overview of model-
based clustering algorithms in Sect. 3.1.1 with an extension to
Bayesian formulation in Sect. 3.1.2. In Sect. 3.1.3 we present
density-based clustering methods, which build the foundation
for SigMA, discussed in Sect. 3.2.

3.1.1. Parametric clustering

Parametric clustering algorithms are appealing because of the
probabilistic interpretation of the clusters these algorithms gen-
erate. The model-based approach introduces a finite mixture
of density functions of a given parametric class. The cluster-
ing problem reduces to the parameter estimation of the mixture
components, typically done using the expectation-maximization
(EM) algorithm (Dempster et al. 1977). The EM algorithm tries
to find maximum likelihood estimates of given parameters iter-
atively. A popular approach is to model the mixture compo-
nents as multivariate Gaussian density (e.g., Gagné et al. 2018a;
Cantat-Gaudin et al. 2019b; Kuhn & Feigelson 2019).

A considerable downside limiting parametric clustering
algorithms’ versatility is their dependence on the unknown num-
ber k of mixture components. Depending on data characteristics
such as dimensionality, the number of samples per cluster, and
cluster separation, determining k is a difficult problem. Address-
ing this problem is paramount, as the resulting model is very
sensitive to the choice of k (Celeux et al. 2019).

Although model selection methods such as the Akaike infor-
mation criterion (AIC; Akaike 1974) and the Bayesian informa-
tion criterion (BIC; Schwarz 1978) aim to provide a principled
approach to selecting k, they make the somewhat restricting
assumption that the data are sampled from a model within the
collection to be tested. This assumption can result in overes-
timating the number of k in practical situations (Celeux et al.
2019). Further, BIC and AIC only work well in cases with plenty
of data samples, well-separated clusters, and a well-behaved
background distribution (Hu & Xu 2003). These circumstances
make extracting clusters with a low signal-to-noise ratio diffi-
cult, especially in the low-density regime. Many of the above-
presented problems can be mitigated using a Bayesian analysis
approach.

3.1.2. Bayesian clustering approach

The deviance information criterion (DIC) for missing data mod-
els (Celeux et al. 2006) is commonly mentioned as a Bayesian
model selection criterion. However, in a Bayesian setting,
the unknown number k of mixture components can naturally
be treated as a random variable estimated jointly with the
component-specific parameters.

Notably, two Bayesian formulations of selecting k exist,
finite and infinite mixtures models. Finite mixture models often
rely on the reversible jump Markov chain Monte Carlo (RJM-
CMC) technique (Richardson & Green 1997), which can navi-
gate between finite mixture densities with variable k. Similarly,
sparse finite Gaussian mixtures (Malsiner-Walli et al. 2016)
involve specifying sparse priors on the mixture parameters
and can be performed using classical Markov chain Monte
Carlo (MCMC) methods. In contrast, nonparametric Bayesian
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Fig. 1. Level-set method generating a hierarchical merge tree. Via a continuous change of λ from ∞ to −∞, a new component is created at each
maximum (white points). At each saddle point (black points), components are merged. The merge tree is fully computed when λ reaches the global
minimum.

approaches are based on mixture models with a countably infi-
nite number of components. In this case, the prior over the
mixing distribution typically takes the form of a Dirichlet pro-
cess (Müller & Mitra 2013).

Although Bayesian analysis methods provide well-
established methods for identifying the number of clusters
k, fitting models to data requires a statistical model that can
generate the data set reasonably well (Hogg et al. 2010). The
observed morphological structure of co-moving stellar systems
in position space is significantly more intricate than simple
multivariate Gaussians. In recent years many new cluster
shapes such as tidal tails (Meingast & Alves 2019; Röser et al.
2019; Jerabkova et al. 2021), streams (Meingast et al. 2019),
strings (Kounkel & Covey 2019), rings (Cantat-Gaudin et al.
2019a), snakes (Wang & Ge 2021), and pearls (Coronado et al.
2022) have been identified. Additionally, the projection of
3D space velocity onto the celestial sphere provides another
complexity requiring a flexible clustering scheme.

Nonparametric models are frequently employed when the
process that generates data is intricate, and the distribution form
is unclear or hard to define. Nonparametric models, unlike para-
metric models, do not impose strict assumptions about the shape
or features of the underlying distribution. Instead, they aim to
learn the underlying pattern straight from the data. This allows us
to make predictions for exceedingly complex distributions with-
out having to know or presume the shape of the distribution.

3.1.3. Nonparametric, density-based clustering

The premise of nonparametric density-based methods states that
the observed data points4 X = {x1, . . . , xN} with xi ∈ R

d are
drawn from an unknown density function f . The goal of non-
parametric cluster analysis is then to understand the structure of
the underlying density function, which is estimated from data.
In one of the earliest formulations, Wishart (1969) argues that
clusters are data samples associated with modes in f . The work
proposed by Koontz et al. (1976) and the widely used mean-
shift algorithm and its variants (Cheng 1995; Comaniciu & Meer
2002; Vedaldi & Soatto 2008) are examples of this “mode-
seeking” category.

Mode-seeking methods proceed to cluster the data by locat-
ing local peaks in f and their corresponding attraction basins.
Attraction basins are regions in which all gradient trajectories
converge into one single peak. However, the gradients and modes
are highly dependent on the density function approximation f̂ .
To increase the robustness of the result, Mean-Shift, for exam-
ple, seeks to reduce random fluctuations by employing a smooth-
ing kernel to f̂ . The introduction of an extra parameter shifts the
issue to the user, who is tasked to carefully select the nonintuitive
smoothing factor in order to obtain a satisfying clustering result.

4 In the following, bold, lower-case variables denote d-dimensional
vectors.

Moreover, the time complexity of at least O(N2) makes them not
great candidates for application to astronomical data sets.

Hartigan (1975) proposed a similar definition of clustering
in which a cluster is defined as the connected components of the
level sets5 of f . Given a data set, X, drawn from an unknown
density function, f , that has compact support, X, we can for-
mally write the resulting level sets for the threshold λ as

L(λ) := {x ∈ X : f (x) ≥ λ}. (3)

Thus, L(λ) constitutes a set of connected components that we
identify as clusters. Varying the parameter λ from∞ to −∞ gives
a hierarchical data summary, called the merge tree. Figure 1
highlights the generation of such a merge tree, which builds the
basis for hierarchical density-based clustering. For more details
see Appendix B.1.

In the level-set framework, popular clustering algorithms
such as DBSCAN can be simply thought of as a single level
that is obtained by fixing λ. DBSCAN avoids estimating the
data density explicitly, by employing a radius parameter, usu-
ally called ε, along with a minimum number of points parameter,
min_points. Clusters are defined as connected regions of points
that contain at least min_points within ε-sized shells around
them.

The connected components of the level set L(c) are the
resulting clusters while the remaining data are treated as noise.
However, the choice of the parameter λ, which is related to
DBSCAN’s ε parameter, is ambiguous, a task that gets espe-
cially challenging when the number of clusters varies greatly
between levels. We find a reflection of this difficulty in choos-
ing the right parameters in the astronomical literature, which
employs a variety of different heuristics to select the parameter ε
(e.g. Castro-Ginard et al. 2018; Zari et al. 2019; Fürnkranz et al.
2019; Hunt & Reffert 2021).

For many data sets containing clusters with variable densi-
ties, employing a single threshold λ cannot reveal all peaks in f .
A hierarchy of clustering solutions can be obtained by consider-
ing all possible threshold values at once (see Fig. 1).

3.2. SigMA: Significance mode analysis

This section describes our clustering pipeline, SigMA, which
builds on several established methods from data mining and
statistics. We discuss those methods in further detail in
Appendix B.1.
SigMA is tuned to astrometric data provided by Gaia and

aims at producing astrophysically meaningful clustering results.
Our technique seeks to identify modal regions in the data set (5D
phase space) that are separated by dips. By applying a modality
test for each pair of neighboring modes, we obtain a clustering
result with measures of significance. The workflow is schemati-
cally highlighted in Fig. 2. A modal region is defined as the set of

5 Often also referred to as super-level sets.
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Fig. 2. Proposed clustering process SigMA, highlighted on a 2D toy data set of three Gaussians with variable covariance matrices and means. (1)
The generated toy data set consisting of three bivariate Gaussians shown in white alongside 2σ confidence ellipses in color. (2) The clustering
procedure starts off by estimating the density of the input data. (3) Next, a graph-based hill climbing step is performed in which points are
propagated along gradient lines toward local peaks. (4) This gradient propagation results in a preliminary segmentation of input samples that
typically is far too fine-grained. (5) These segmented regions are iteratively merged with a parent mode if a modality test along the MEP detects
no significant density dip. (6) The final segmentation retains all three clusters.

points that all end in a particular mode when following the path
tangent to the gradient field at each point. It is important to note
that modal regions fully segment the data set, as seen in Fig. 2
(panel 6). Thus, modal regions are a mixture of cluster members
and field stars, while the field stars will be removed as noise as
outlined in Sect. 3.5.

3.2.1. A fast modality test procedure

We considered the hypothesis test introduced by Burman
& Polonik (2009), which examines the modality structure of a
path between two peaks in the density. Conceptually two neigh-
boring peaks are “true” clusters in the data if there exists no path
between them that does not undergo a significant dip in density.

Given the d-dimensional data X = {x1, . . . , xN} drawn from
f and any point r on a path connecting two modes ci, c j in f ,
Burman & Polonik (2009) show that

ŜB(r) = d
√

k/2
[
log dk(r) −max(log dk(ci), log dk(c j)

]
(4)

is asymptotically standard normally distributed. Here dk(z)
denotes the distance to the kth nearest neighbor of the point z.
The null hypothesis of uni-modality is rejected at significance
level α if

ŜB(r) ≥ Φ−1(1 − α), (5)

where Φ is the standard normal cumulative distribution function
(CDF). For a more thorough derivation of Eqs. (4) and (5) see
Appendix B.2.

Since Eq. (4) processes a single point rather than a com-
plete path, the modality test in Eq. (5) describes a point-wise
procedure. Burman & Polonik (2009) employ the test with sam-
ples generated along the straight line connecting two modal can-
didates to determine the modality for an entire path. The null
hypothesis is rejected if any single test fulfills Eq. (5). However,
this procedure only applies to convex clusters and does not scale
well as tens to hundreds of distance computations along each
path increase the run-time drastically.

Instead of computing the test statistic ŜB(r) for multiple val-
ues of r, we propose limiting the calculation to only a single
realization. Importantly, reducing the number of point-wise eval-
uations of point-wise tests does not interfere with the distribu-
tional assumption of the test statistic itself. Burman & Polonik
(2009) show that the test statistic ŜB along the entire path p with
p = [r1, . . . rN] follows an N-dimensional multivariate normal
distribution with zero mean and identity covariance matrix under
the null hypothesis. Thus, the null hypothesis is independent of
the number N of point-wise tests performed.

Modifying the modality test procedure to a single evalua-
tion of the test statistics reduces the overall statistical power
of the test. Because we under-sample the path between two
modes, we decrease the chance of sampling in places where a
significant drop in density occurs. Therefore, the probability of
type II errors increases, that is, the null hypothesis is not rejected
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even though it is false. To maintain statistical power while also
extending the test procedure to non-convex cluster shapes, we
analyze the nature of possible connections between modal can-
didates in the data.

Of all possible paths between two peaks, only the minimum
energy path (MEP) needs to be considered. The MEP is the opti-
mal solution for the problem of finding the continuous path from
one peak to another through input space X with the highest min-
imal density. Thus, the density dip along the MEP is the minimal
possible dip that can exist between two neighboring peaks.

Given a set of initial modal candidate regions in f̂ the MEP
leads over the connecting saddle point when moving from one
mode to another. At the saddle point position, the path reaches
its global density minimum. Figure 2 (panel 5) schematically
illustrates two possible paths, the MEP and a second arbitrary
path.

To effectively reduce the number of point-wise tests without
losing all statistical power we need to evaluate Eq. (4) in areas
close to the maximum density dip while ignoring other areas
irrelevant to the rejection decision. This maximum density dip
at point s maximizes the test statistic and, thus, dominates the
test procedure. Due to the test statistics’ proportionality to the
distance dk(s), its value is maximal when the density is minimal.

For two neighboring modal regions, the modality test pro-
cedure can, therefore, be reduced to a single point-wise test at
the saddle point s connecting the two peaks. As the saddle point
governs the modality test, we can assign a p-value that takes the
following form:

p = 1−Φ
(
d
√

k/2
[
log dk(s) −max(log dk(ci), log dk(c j)

])
. (6)

At the end of Appendix B.2, we empirically show that these
assumptions hold and introduce a small correction factor to the
variance of the standard normally distributed test statistic under
H0 that is valid for Gaia phase space data.

Determining the saddle point is discussed in the following
section. If all density minima lie on the boundary of modal
regions, the saddle point of two neighboring modes lies at their
shared border. Using this monotonous property assumption, we
aim to provide a fast yet accurate test procedure to examine the
modality structure of the data.

3.2.2. Identifying and pruning modal candidates

To identify modal regions from the data set X, we implement a
graph-based, hill-climbing algorithm analogous to Koontz et al.
(1976) where the vertex set of the graph G represents the data
X. The initial modal search is performed in one pass over the
vertices of G sorted in descending f̂ -order.

A data point becomes a local mode of f̂ if all its neighbor
connections have lower densities. Alternatively, points are prop-
agated according to their slope in f̂ . Each point is iteratively
assigned to neighbors with maximum f̂ -value (see Fig. 2, panel
3, for a schematic illustration). After this pass the data are sepa-
rated into m disjoint modal sets M = {M1, . . . ,Mm}.

Since graph-based hill-climbing procedures are susceptible
to perturbations in f̂ , a second pass is needed to merge insignif-
icant modal regions into their stable parent mode. To deter-
mine the merge order, we computed the cluster tree of M. As
described in Sect. 3.1.3, the cluster tree is obtained by varying
the density threshold λ from ∞ → −∞ and registering modal
regions when λ passes through a peak in f̂ and their unification
when λ passes through the respective saddle point. To finalize

the cluster tree, we need to identify the saddle points between
modal regions of M.

We determine the saddle point between two modes via an
edge search in G. Specifically, we consider edges that connect
vertices that lie in different modal sets. We assume extracted
modal regions are proper ascending manifolds. Thus, the modal
regions are devoid of local minima on the inside, which only lie
on the border; consequently, saddle points are found at the com-
mon boundary of both regions. The “saddle edge” represents the
bridge between two modal regions where the density is maxi-
mal. We define edge density as the minimum density along the
connecting line segment. To account for density dips along the
edge path while limiting the number of distance computations,
the edge density is set to be the minimum density between its
two vertices and the density at the geometric mean of the ver-
tex positions. This edge density approximates the corresponding
saddle point density between two adjacent modal regions.

The merging of spurious modes then proceeds by iterating
over the set of predetermined saddle points sorted in descend-
ing f̂ -value order. At each step, the uni-modality test in Eq. (6)
is evaluated, and neighboring modal regions are merged if the
respective p-value exceeds the significance level α. Therefore,
the significance level α provides an immediate and meaningful
way to simplify the initial cluster tree.

3.3. Parameter selection

In the following, we discuss various parameter choices that affect
the final clustering result. The presented mode-seeking method-
ology is agnostic to the choice of the (1) graph used in the
hill-climbing step, (2) density estimator, and (3) scaling factors
between positional and velocity features. In the following we
explain our decisions on these three algorithmic aspects.

3.3.1. Graph

The choice of the graph directly affects the gradient approxi-
mation. For instance, in a complete graph where every pair of
vertices are connected via an edge, the graph-based gradient
approximation loses its locality meaning entirely. In this case,
the hill-climbing algorithm merges each vertex with the dens-
est point in the data set on the first pass. Thus, over-connected
graphs lead to clusters that falsely merge numerous distinct
modes in the data set.

Conversely, under-connected graphs such as minimum span-
ning trees restrict the gradient estimation too much, producing
vast amounts of spurious clusters. Furthermore, the low number
of neighboring vertices dramatically restricts the possible paths
between two initially formed modes. Thus, under-connected
graphs introduce significant errors in determining saddle points,
which drastically compromises the validity of extracted modal
regions. We consider empty region graphs (ERGs) to strike a
balance between over and under-connecting points in the data
set X. In an ERG, a vertex between two points is created if a
given region around them does not contain any other point (see
Jaromczyk & Toussaint 1992, for a review).

The β-skeleton (Kirkpatrick & Radke 1985) is a one-
parameter generalization of an ERG where β determines the size
of the empty region. For β = 1, the graph becomes the Gabriel
graph (Gabriel & Sokal 1969), while for β < 1 and β > 1,
edges are added or removed, respectively. Correa & Lindstrom
(2011) find that critical point searches (necessary for topologi-
cal decomposition, clustering, and gradient estimation) are more
accurate with β-skeletons, with β < 1 compared to k-nearest
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Fig. 3. Schematic figure linking the cluster number to the density estimation process. Applying a smoothing operator generates a family of density
fields. This hierarchical family of functions is called a scale space.

neighbor (k-NN) graphs and the Gabriel graph. Since the number
of vertices grows very fast as β gets smaller, we chose a value of
β = 0.99.

Adopting a β-skeleton on our 5D data, we find that points
have, on average, approximately 50 neighbors. To reduce the
chance of separate modal regions being connected via vertices
and, thus, erroneously merging in the first hill-climbing step, we
pruned the initially computed graph in a post-processing step.
We removed vertices that show a significant density dip as one
moves from one vertex to another. For simplicity, we assumed
that the saddle point lies at the arithmetic mean of the two vertex
points.

3.3.2. Density estimation

As the graph choice, density estimation is a core part of the
algorithmic pipeline that affects gradient propagation and, con-
sequently, the initial mode finding step (see panels 2 and 3 in
Fig. 2). Since we cannot describe the complex stellar distribution
via parametric models, we employed a model-agnostic, nonpara-
metric estimator for the underlying density.

The most popular nonparametric density descriptors are
kernel density estimation (KDE) and k-NN. The KDE technique
estimates the density f by convolving the data with a symmet-
ric kernel function. The bandwidth parameter can be thought of
as the standard deviation of the kernel, which determines the
smoothing effect of convolution. A gradual increase in band-
width and its impact on the density is shown in Fig. 3. The k-NN
method takes a more naive approach to estimating the underly-
ing density. The density value at any given point in the phase
space is inversely proportional to the distance to its kth nearest
neighbor.

The KDE inherits the smoothness properties of the kernel.
Thus, the density becomes infinitely differentiable for a Gaussian
kernel. Conversely, the k-NN density estimate is not smooth
and, in fact, not even continuous. Despite its noncontinuous
nature, the k-NN density estimation method has several advan-
tages for modal clustering. Notably, Dasgupta & Kpotufe (2014)
show that point modes of a k-NN density estimate approximate
the true modes of the underlying density function. The nearest

neighbor method is also able to provide a more accurate esti-
mate of high-density regions compared to the kernel method
(Burman & Nolan 1992).

In contrast to KDE, the computational cost of nearest neigh-
bor methods is highly efficient due to the use of kd-tree6 queries
that provide desirable memory complexity (Bentley 1975). Fur-
ther, choosing the number of neighbors k is more straightforward
than the bandwidth parameter for KDE. Finally, the locality of
the k-NN approach provides a versatile method for determining
densities when structures exist at different densities scales. Since
KDE employs a constant bandwidth, it can only adapt to a single
characteristic density scale. A fixed, “intermediate” bandwidth
may adequately resolve medium-density clusters when struc-
tures are present at various scales. However, fine-grained and
large-scale patterns will be over-smoothed or under-smoothed,
respectively.

We employed a k-NN estimator to approximate the density
function considering these advantages. Specifically, we used a
density estimator based on the distance to an empirical measure
described by Biau et al. (2011). It is a weighted k-NN estimate,
which incorporates distances d1, . . . , dk to all nearest neighbors
up to k. The distance to an empirical measure is a distance-like
function robust to the addition of noise and is used to recover
geometric and topological features such as level sets. It is defined
as follows,

dm(x) =

√
1
k

∑
yi∈Nk(x)

||yi − x||2, (7)

where Nk(x) is the neighborhood point set of x of size k. In
other words, the distance to empirical measure takes the form
of a mean distance from the point x to its k-NNs. The density
estimator is defined via the inverse of this quantity,

f̂m(x) =
1

nVd

∑k
j=1 j2/d

kd2
m(x)

d/2

, (8)

where Vd denotes the volume of the d-dimensional unit ball and
n is the number of data points. Since in our use case the order of
6 Short for k-dimensional tree.
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density values is important, we can ignore constant normaliza-
tion terms in Eq. (8).

The k-NN algorithm is not only used to estimate the den-
sity but also during the modality test procedure (see Sect. 3.2.1).
Since classical k-NN, as employed in the modality test, automat-
ically ignores points within its k-distance, SigMA has a built-in
limit to the size of structures it can resolve. This allows us to
determine a lower bound on the velocity dispersion of a popu-
lation that SigMA can identify. We find the minimally resolvable
tangential velocity dispersion to be 0.5 km s−1 by analyzing the
distribution of k-distances with a lower bound on k = 15, which
we also assume to be the minimum cluster size. Clusters with
lower velocity dispersion get smoothed to at least this minimum
dispersion. This value increases as k gets larger.

3.3.3. Scaling factors

The clustering analysis of co-moving populations in position and
velocity occurs in a combined positional and kinematic phase
space. Distance relationships among stars are needed to express
densities and build a graph from the input data. Since tangen-
tial velocities are measured in km s−1 and galactic coordinates in
pc, both subspaces have different ranges. Significant range dis-
crepancies between dimensions influence the clustering process
as it directly impacts the distance function. Individual 1D dis-
tance contributions along feature axes with narrow ranges can be
ignored when features with large standard deviations are present.
Hence, we consider scaling factors between positional and kine-
matic feature subspaces.

Scaling factors, ci, put weight on specific subspaces to
increase or decrease their importance in the clustering process.
The multiplicative factor affects the range of feature axes impact-
ing the distance function. Thus, scaling factors ci > 1 increase
the distance to objects in a given dimension i, increasing their
importance in the process. We applied the same scaling cv to
both tangential velocity axes while leaving the positional axes
unchanged with cx = 1. SigMA is applied to the following set of
dimensions,D:

D = {X,Y,Z, cv × vα,LSR, cv × vδ,LSR}. (9)

Theoretical considerations of the scaling relationship cx/cv
depend on various initial cloud and cluster configurations and
interactions. However, the estimation of these influences is
plagued by substantial uncertainties. Instead, we aim to deter-
mine a suitable scaling factor empirically by considering suc-
cessful past extractions. Since the tangential velocity is inversely
proportional to parallax, we aim to extract a relationship between
a stellar cluster’s distance and its scaling factor.

The Sco-Cen association is at a distance of about 100–200 pc
from us. To model the empirical distance-scaling relationship
and subsequently apply it to Sco-Cen, we used data on stel-
lar clusters within 500 pc. Cantat-Gaudin & Anders (2020) have
compiled a list of open clusters in the Milky Way disk. However,
using a single cluster census can introduce a bias in the result-
ing scaling factor as only a single member selection function
was used to obtain the sample. Thus, we substitute and add clus-
ters covered by Gagné et al. (2018b), who have used a multivari-
ate Bayesian model to identify members of young associations
within 150 pc7.

7 We cross-matched the Gaia DR1 sources identified by Gagné et al.
(2018b) and DR2 sources from Cantat-Gaudin & Anders (2020) with
DR3 for more precise astrometry. We opted for the Gagné et al. (2018b)
census if a cluster appears in both surveys. Compared to density-based
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Fig. 4. Empirical distance-scaling relationship using data from
Gagné et al. (2018b) and Cantat-Gaudin & Anders (2020). The x-axis
represents the distance to stellar clusters; the y-axis shows the dispersion
ratio of positional over kinematic subspaces. This dispersion directly
corresponds to the velocity scaling factor, cv, as discussed in Sect. 3.3.3.
The gray line represents the best fit linear regression line, while the gray
band indicates the 1σ highest density interval obtained from sampling
the posterior predictive distribution.

The scaling fraction should account for the distance differ-
ences between positional and kinematic subspaces. To quantify
this idea, we consider the distance distribution of sources to the
cluster’s center in each subspace. Specifically, we compare the
median absolute deviation of sources from their centers in posi-
tion and velocity space, providing a robust statistic for statisti-
cal dispersion. We refer to this ratio of observed dispersion in
the respective subspaces as the x–v dispersion ratio. To estimate
the uncertainties in the x–v dispersion ratio, we perform boot-
strap sampling with 100 resamples for each cluster and compute
the mean and standard deviation of computed dispersion ratios
across the ensemble.

The dispersion of cluster members in a given feature pro-
vides a measure of the scale of stellar populations in that dimen-
sion. Since the x–v dispersion ratio is not one (see Fig. 4), we
have to prevent an unequal emphasis of one subspace against the
other. To compensate for the bias toward positional axes during
clustering, the velocity features must be scaled by a factor cv
equal to the observed x–v dispersion ratio.

Figure 4 shows the relation between a cluster’s distance
and its x–v dispersion ratio (alongside determined uncertainties),
which equivalently is our choice of cv. We identify an approxi-
mately linear trend and fit a Bayesian linear model to the data
(see Appendix B.3 for a detailed description of the model choice
and fitting procedure).

Using this empirical mean model, we find mean suitable
scaling factors, cv, between approximately 5–10, assuming the
clusters of Sco-Cen are at a distance of about 100–200 pc. With-
out the LSR correction, these values translate to a range of 4–7,
which are comparable to the correction factors by Kerr et al.
(2021, using vα, vδ) who used the values 5 and 6 in their
clustering approach (see Appendix C for further discussion on
these two velocity spaces). At first glance, the model suggests

methods, the mixture of Gaussian densities deals naturally with scaling
factors (provided the Gaussian assumption holds). The scaling factors
can be compensated (to some extent) in the covariance matrix of the
individual Gaussian components.
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sampling values in the range of 5–10 or using the mean of 7.5.
However, we also observe a significant scatter around the model
that we need to consider. Instead of a single mean scaling factor,
we aim to obtain a distribution of values from a given range of
distances to the clusters we aim to find.

As discussed in Appendix B.3, possible scaling factors can
be expressed by the conditional probability integrated over a
range of distance values. Given the linear model and associated
model uncertainties obtained from the posterior predictive distri-
bution, we find a resulting distribution of scaling factors within
distances of 100–200 pc. Keeping the number as small as possi-
ble is essential since we must perform a separate clustering run
for each sample we draw from the distribution. We generate ten
samples, which try to cover the sample space while keeping the
underlying probability distribution in mind. The resulting sam-
ples can be seen in Fig. B.48.

We run the clustering pipeline for each scaling fraction
sample, creating an ensemble of 10 clustering solutions. By
summarizing the (potentially conflicting) results, we obtain a
single consensus clustering solution. The consensus result is
more robust against noisy data by aggregating multiple cluster-
ing solutions. This aggregation technique creates a meta-solution
that usually provides better accuracy than any single clustering
result can (Strehl & Ghosh 2002; Vega-Pons & Ruiz-Shulcloper
2011).

A consensus function aims to produce a result that shares as
much information as possible with individual clustering results
among the ensemble. In particular, we are interested in robust
cluster solutions that exist through multiple velocity scales
while ignoring unstable solutions where clusters randomly break
apart or merge into others. We outline our consensus clustering
approach in Appendix B.5 where Fig. B.6 shows a schematic of
the proposed pipeline.

3.4. Measurement uncertainties and multiple hypothesis
testing

Rigorous integration of measurement uncertainties into the
modality testing procedure of Burman & Polonik (2009) is a
highly complex task, primarily due to the heteroscedastic nature
of the uncertainties. Instead, we used a Monte Carlo approach
that attempts to approximate the sensitivity of the modality struc-
ture under statistical uncertainty. We did this by resampling the
data N times using a Gaussian distribution centered on each
point with an appropriate covariance matrix obtained from Gaia
data. The resampling procedure creates N “merge” or “do not
merge” decisions at each saddle point location. In the following
Sect. 3.4.1, we discuss methods for combining the N p-values
into a single merge decision. In Sect. 3.4.2 we aim to reduce
the chance of falsely rejecting the null hypothesis and thus mak-
ing incorrect do not merge decisions, the likelihood of which
increases as the number of hypothesis tests (i.e., saddle points)
grows.

3.4.1. Single merge decision: Combining multiple p-values

Recomputing the modal structure on each resampled data set
individually is computationally expensive. Therefore, we aim to
study the effect of deviations on the initially computed modal
layout instead. Since every merge decision impacts the final

8 We point out that the distance notation in the appendix changes from
d to r to minimize confusion in the derivation of the final probability
density function.

modal structure, we must evaluate the impact of uncertainty
locally at each saddle point. While looping through all saddle
points, we re-evaluate the hypothesis test for each resampled
modal and saddle point density. However, testing each hypoth-
esis multiple times increases the likelihood of rejecting an indi-
vidual null hypothesis. Instead of focusing on single tests, we
need to combine these individual tests and simultaneously test
the global null hypothesis that no p-value is significant. As a
result, a global hypothesis test can “borrow” information from
the other test statistics to gain significance.

A popular method of computing the global p-value is
Fisher’s method (Fisher 1934). Fisher’s method assumes that
individual p-values are uniformly distributed in the interval
[0, 1]. Consequently, the negative logarithm follows an expo-
nential distribution: −log pi ∼ Exp(1). The test statistic, t, then
becomes the sum of the negative log-sum of n p-values, which
follows a χ2 distribution with 2n degrees of freedom:

t = −2
n∑

i=1

log pi ∼ χ
2(2n). (10)

Fisher’s method is especially attractive for densely packed
cluster agglomerates such as Sco-Cen. If clusters have only
marginally different velocities and positions, our point-wise test
might produce a p-value slightly larger than the rejection thresh-
old. In such cases finding the precise saddle point position is
challenging, leading to a type II error. Although no single test
(or very few) can reject the null hypothesis, many small effects
in Eq. (10) enable us to reject the global null hypothesis. How-
ever, Fisher’s method assumes statistical independence between
individual tests. Since the resampled data sets are not indepen-
dent, this assumption is somewhat violated (for a more detailed
discussion, see Appendix B.6).

Instead, we employed the Cauchy combination test (CCT;
Liu & Xie 2020), which is similar to Fisher’s method in the sense
that it is also able to combine multiple individual p-values that
aggregate multiple small effects. Compared to Fisher’s method,
the authors show that CCT is still powerful under arbitrary
dependence structures among p-values. The test statistic t –
which is asymptotically standard Cauchy distributed – is defined
in the following:

t =

n∑
i=1

wi tan
[
(0.5 − pi)π

]
. (11)

The weights wi must sum to one and can reflect the power of
respective hypothesis tests. Since all tests are performed equally,
we distribute the weights evenly by choosing wi = 1/n.

In practice, we computed distances to the kth neighbor of
each initial modal candidate and corresponding saddle points
across resampled data sets. The number of resampled data sets
limits the proposed procedure, as data generation is costly. Thus,
we restricted the number of samples to n = 50, rejecting the
global null hypothesis at a 5% significance level, hence t < 0.05.

3.4.2. Multiple merge decisions: Reducing false discoveries

The number of random spurious modes and associated saddle
points is proportional to the data set size. For large data sets,
such as the Gaia data, we obtain hundreds of modal candidates,
which we prune in a second pass (see Sect. 3.2.2). As the number
of modal candidates grows, the chance of falsely rejecting the
null hypothesis (a false do not merge decision) increases.
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To conceptualize the probability of making one or more
type I errors when performing multiple hypothesis tests across
a data set, the concepts of family-wise error rate (FWER) and
false discovery rate (FDR) have been introduced. FWER aims to
control the probability of at least one false positive in the sample,
while FDR aims to control the expected proportion of false posi-
tives among all positives. Tests from both families involve mod-
ifying the significance threshold of statistical tests. FWER cor-
rection typically involves more conservative adjustments, such
as the Bonferroni correction (Bonferroni 1936), that increase the
threshold for statistical significance, while FDR correction typi-
cally involves less stringent adjustments. As the number of tests
grows, FDR correction provides greater statistical power at the
cost of an increased number of type I errors (Shaffer 1995).

Since we aim to identify a small number of significant
results among a large number of statistical tests instead of
aiming to minimize the total risk of any false positives, tests
from the FDR family are preferred over controlling the FWER.
The Benjamini-Hochberg (BH; Benjamini & Hochberg 1995)
method is a widely used statistical method for controlling the
FDR in multiple hypothesis testing. The BH procedure guaran-
tees that the FDR is controlled at the desired significance level α,
assuming that the null hypotheses are independent or positively
correlated. Since individual tests are performed on spatially dis-
connected saddle-point and mode pairs, we did not assume any
correlation structure among individual tests on a given data set.
Thus, once we obtain revised p-values for each saddle-point –
mode pair through resampling (see Sect. 3.4.1), we applied the
BH procedure to adjust the p-values globally and ensure FDR
control.

3.5. Noise removal

Following the procedures described above, we obtain a data set
segmentation into prominent peaks by iteratively merging modal
regions separated by insignificant dips in density. This segmen-
tation yields a list of nonoverlapping areas in the data set without
a noise characterization in mind. In principle, each modal region
contains a dense core and background population correspond-
ing to the stellar clusters and field content. This section aims to
remove the field star component from the modal region to obtain
a final clustering result.

In the following, we discuss the noise removal pipeline
schematically highlighted in Fig. 5. The noise removal scheme
is based on a density-based member selection technique, which
we motivate in Sect. 3.5.1. The pipeline is roughly split into
two main parts. In the first part, we aim to assign a radial
velocity to each source to transform the data into 6D Galactic
Cartesian coordinates (XYZUVW). We determine the cluster’s
3D space motion to estimate missing radial velocity informa-
tion, discussed in Sect. 3.5.2. In the second part, we describe
the automated cluster member selection using so-called cluster-
noise classifiers (see Sect. 3.5.3). Finally, we discuss contamina-
tion and completeness estimates of our member selection proce-
dure in Sect. 3.5.4.

3.5.1. Density-based member selection

Identifying signal and background sources can be formulated
using a mixture model approach in which cluster and field star
populations are modeled directly in phase space. However, due to
complex cluster shapes found in the literature (see Sect. 3.1.2), we
cannot create a generative model of the data set at hand. Instead,
we return to the density-based formalism of clustering, where we

treat clusters as an enhancement of density over the background.
To select cluster members as over-densities in phase space, we
reduce the 5D phase space information to the univariate density
information. A single density threshold in this univariate space
corresponds to an isosurface in the original phase space.

We aim to describe the univariate density distribution as
a mixture model to automatically obtain a suitable isosurface
threshold to separate the signal from the background. This model
should be able to capture the point-wise density distribution of
field stars and cluster members. Before fitting a mixture model
to data, we must define the number of mixture components and
distributions we used.

A mixture of two components in a first approximation seems
plausible as the algorithm divides the input space into regions
containing a signal and background component. By design, each
region consists of a single-density peak in phase space. This dis-
tributional condition forces the field star component to lie locally
around the cluster while exhibiting no extra peaks. To concur
with uni-modality, the background distribution is restricted to
uniformity or exactly one density peak that coincides with the
signal mode. As the former is more likely, we assume the field
component to be approximately uniform in phase space around
a cluster. Uniform distributions in N-dimensional feature spaces
translate to a single Gaussian in the univariate density space.

The distribution of cluster star densities is harder to model.
Cluster members are commonly modeled as multivariate
Gaussians (e.g., Gagné et al. 2014; Sarro et al. 2014; Crundall
et al. 2019; Riedel et al. 2017). As discussed in Appendix B.7,
given a k-NN density estimator, a multivariate Gaussian in
phase space approaches a Gaussian distribution in univariate
density space as the dimensionality grows. However, obser-
vational findings point to more complex morphologies (e.g.,
Meingast & Alves 2019; Röser et al. 2019; Meingast et al.
2019; Kounkel & Covey 2019; Cantat-Gaudin et al. 2019a;
Jerabkova et al. 2021; Wang & Ge 2021; Coronado et al. 2022)
and significant mass is contained in the low-density region outside
the cluster core (Meingast et al. 2021). As discussed in Sect. 3.1.2,
we lack critical information to formulate a generative model
for the signal distribution in phase space and, consequently,
in univariate density space. Instead of explicitly building a
univariate signal model, we employed multiple Gaussian mixture
components to describe the point-wise k-NN density distribution.
Thus, we did not restrict the number of Gaussian components
during the fitting procedure to provide flexibility to capture more
complex distributions.

To decide on a proper density threshold ρ0, we determine
the number of mixture components by minimizing the BIC. The
background is automatically identified as the Gaussian compo-
nent with a low relative mean (i.e., lower point-wise densities),
small variance (uniform background component has less rela-
tive variance around its mean density than the signal), and large
weight (the number of field stars exceeds cluster members by
about 100:1). This procedure can be seen in Fig. 6 where we
show an example of two Gaussians fitted to the univariate den-
sity data (denoted by ρ) of one modal region.

3.5.2. Bulk velocity estimation

The Gaussianity assumption of density components is appro-
priate only in the original Cartesian coordinate system. Densi-
ties computed from tangential velocities suffer from perspec-
tive effects, leading to deviations from normality due to the
nonlinearity of projections onto the celestial sphere. We find
such distortions empirically when analyzing distributions of
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Fig. 5. Noise removal pipeline separating cluster members from field
stars. The pipeline is split into two main parts. In the first part, we aim
to assign a radial velocity to each source to transform the data into
Galactic Cartesian coordinates. In the second step, we used the trans-
formed data to fit several cluster-noise classifiers to separate the signal
from the background. Blue represents data products at various steps,
green denotes processes, and red shows decisions. For more details, see
Sect. 3.5.

various modal regions in projected 2D (see the tangential veloc-
ity space in Fig. C.1) compared to Cartesian 3D velocities. This
effect is reduced by correcting the observed tangential veloci-
ties for the Sun’s motion, yielding motions relative to the LSR
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Fig. 6. Noise reduction schematic. We fit the observed uni-variate den-
sity distribution, ρ, with a mixture of two Gaussians that model the
cluster (red line) and field star (black line) population, respectively. We
obtained an approximation to the field star contamination and incom-
pleteness rate in the cluster sample by considering the cluster-noise
classifier’s confusion matrix entries, particularly false positives, false
negatives, and true positives.

(see Appendix C). However, very nearby clusters, which cover
large areas in the sky, are still affected by the observer’s point of
view from Earth. We move to the Galactic Cartesian coordinate
system to eliminate these observational effects. Thus, we trans-
form the data into the 6D space (XYZUVW) to facilitate efficient
signal and background models.

A transformation from proper motion space to a 3D
Cartesian velocity space is only possible if radial velocity infor-
mation is available. However, the majority of radial velocity
measurements of sources are missing (∼62% in our box, 80% if
sources with σvr > 2 km s−1 are removed). Nevertheless, we can
exploit the co-moving property of stellar populations. We aim
to adopt a similar strategy to Meingast et al. (2021), inspired by
convergence point ideas (e.g., van Leeuwen 2009). The expected
radial velocity value can be determined when the 3D bulk motion
of stars alongside their positions is known. However, some clus-
ters lack enough statistics to compute their bulk motion. Before
determining individual radial velocities of member stars, we
have to estimate the space motion of individual populations. In
the following, we describe bulk motion estimation, which pro-
vides a mean to estimate an optimal radial velocity. We summa-
rize the process in the first part of Fig. 5.

We determined the space motion, ũ, of individual populations
of size n by minimizing the following loss function, henceforth
called membership loss:

L(ũ) =

n∑
i=1

∆v2
α,i

σ2
vα,i

+
∆v2

δ,i

σ2
vδ,i

+
∆v2

r,i

σ2
vr,i

 (12)

∆vx,i = vobs.
x,i − ṽx,i. (13)

The minimization is done over the tangential (vα, vδ) and radial
(vr) velocities9.
9 Compared to the clustering analysis, which assumes a universally
valid metric implying a global correlation behavior (see Sect. 2),
the optimization procedure is not affected by nonlinear relationships
between input features. Thus, to avoid propagating errors through the
LSR conversion, we stick to observed tangential and radial velocities.
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The delta terms in the membership loss describe the offset
between observed and computed values at the specified veloc-
ity ũ. Although we introduce an additional observational error
via the parallax uncertainty, we chose the tangential velocities
to match the unit of radial velocities, the essential component
in the sum in Eq. (12). Each term in the sum is weighted by its
respective uncertainty, which decreases the influence of observa-
tions with large measurement errors on the membership loss. If
all observations lack radial velocities, the last term is set to zero;
if only a subset of vr’s is missing, their values are imputed with
the average of its complement.

For a perfectly co-moving population, the membership loss
has a global minimum with a value of 0 at the cluster motion.
Observational uncertainties, contamination from field stars, and
a nonzero velocity dispersion will increase the minimum value
accordingly. To search the 3D bulk motion that minimizes the
membership loss, we used the quasi-Newton Broyden, Fletcher,
Goldfarb, and Shanno method (Nocedal & Wright 1999) with an
initial guess of the mean 3D velocity10. We denote the velocity,
which minimizes the membership loss (Eq. (12)), as the optimal
bulk motion (uOBM).

To determine the cluster motion of the co-moving population
via our minimization approach, finding uOBM needs a large and
pure selection of cluster sources, meaning truly co-moving stars.
We attempt to obtain a relatively clean sample of cluster stars
via the aforementioned mixture model approach (see Fig. 6, and
“Likely cluster members” in Fig. 5). By fitting a mixture of uni-
variate Gaussians to the density distribution of a modal region,
we get a classifier that separates the cluster from field stars11.
Since the input density is 1D, the classifier, also called a cluster-
noise classifier, becomes a simple threshold classifier.

Sources with a density greater than the threshold ρ0 are likely
cluster members. As the classifier is trained on densities deter-
mined in the 5D space, which experiences projection distortion,
we only use the 80% most dense stars in the cluster sample
to determine uOBM. This density filter is designed to remove
likely field star contaminants (false positives), which are typi-
cally expected to be less dense than cluster members. Figure 6
shows an example of the contamination estimation.

The optimal bulk motion uOBM is used to infer an “ideal”
radial velocity. The ideal radial velocity minimizes the Euclidean
distance between uOBM and the velocity vector constrained by the
measured proper motions. We refer to the computed 3D space
motion, which is a combination of measured proper motions
and the inferred radial velocity, as the minimally different veloc-
ity (uMDV). On the one hand, genuine cluster members should
receive an estimated space velocity close to their true motion
(assuming low intra-cluster velocity dispersion of a few km s−1).
Field stars (if not an interloper in phase space) show incompati-
ble observations with the co-moving population and are, on aver-
age, assigned a different space velocity. Together with sparseness
in positional space, field stars consequently show lower densities
in phase space.

We infer uMDV for sources without vr measurements as well
as for sources with large uncertainties of σvr > 2 km s−1. After
this step, all sources have an associated radial velocity, either
measured or inferred. We provide these inferred radial velocities

10 If no radial velocities are available, our initial guess is the null vector.
We empirically find that the optimization converges to the same results
for different initial velocities.
11 We used a simple threshold classifier where both mixture compo-
nents have equal class (posterior) probability. The likelihoods and class
fractions are estimated using a univariate GMM.

(v̂r) in our final catalog12. Thus, compared to the clustering step
of the SigMA pipeline removing the field background explicitly
requires radial velocity estimates for all sources (regardless of
uncertainty). In Appendix B.4 we estimate the necessary frac-
tion of sources with radial velocity measurements without los-
ing accuracy in v̂r. Using two simulated data sets, we find that
SigMA requires at least 5% of radial velocity measurements in
the input catalog to keep errors to a minimum. Due to the need
for some vr measurements, we refer to the SigMA pipeline as
operating in 5.5D.

The bulk velocity estimate correlates directly with observed
proper motions and radial velocities. Therefore, systematic
errors, as in the case of binary or multiple stellar systems,
introduce corrupted measurements that potentially bias the final
result. However, directly flagging binary stars and removing
them from the inference process does not significantly alter the
results as only a tiny fraction (0.05%) of Gaia sources are iden-
tified as multiples (Gaia Collaboration 2023b). Since the work
by Gaia Collaboration (2023b) does not represent the entire
binary population, we investigated another indicator for multi-
ples in the Gaia catalog. For example, the renormalized unit
weight error parameter (Lindegren et al. 2018, 2021) can be used
as a discriminator, which measures how well the astrometric
solution is fitted to a single star model, as also discussed in
Penoyre et al. (2022a,b). These authors also show that binaries,
which have been observed with longer time baselines (e.g., com-
paring Hipparcos, DR2, and DR3), could still deliver paral-
laxes and proper motions that are close to the true values (see
also Kervella et al. 2022). As a consequence, binaries can still
be selected as true-positive members of a cluster if selected with
5D Gaia astrometry, as can be seen, for example, by the clear
binary sequences in Hertzsprung-Russell diagrams (HRDs; e.g.,
Meingast et al. 2021). However, even in these cases, the multi-
ple systems do not comprise a significant fraction of the cluster
selection. Consequently, we assume that binaries contribute only
marginally to the bulk velocity computation.

We applied the presented method to clusters in the
Sco-Cen OB association (see Sect. 5) to validate the bulk veloc-
ity and 3D velocity estimation procedure. During inference, we
randomly remove 95% of radial velocities to facilitate a compar-
ison with observed values. The absolute ∆vr and relative errors
δvr to Gaia measurements with σvr < 2 km s−1 are shown in
Fig. 7. The absolute error is defined as the difference between
the estimated radial velocity, v̂r, and the observed value, vr:

∆vr = v̂r − vr. (14)

The relative error expresses the magnitude of the absolute error
compared with its measured magnitude:

δvr =

∣∣∣∣∣ v̂r − vr

vr

∣∣∣∣∣ . (15)

We find that 68% of sources (1σ) have absolute errors of less
than ±2.35 km s−1 and 95% (2σ) of absolute errors are within
±5.66 km s−1. Thus, the average error is close to the large sta-
tistical uncertainties (2 km s−1) in the sample, constituting an
approximation for the lower bound for the mean estimation
error. The majority (1σ) of relative errors are below 0.55. Thus,
inferred radial velocities are in good agreement with observa-
tions, validating our method and highlighting its robustness to
(not yet fully understood) binary effects and contamination.

The following steps use the space velocity information to
determine cluster membership. We pre-filter unlikely members

12 Given as v_ERV (estimated radial velocity) in Table E.1.
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Fig. 7. Absolute and relative error of inferred radial velocities com-
pared to observed values in Gaia DR3 with radial velocity errors below
2 km s−1. We randomly removed 95% of available radial velocities dur-
ing inference to facilitate this comparison. Only inferred values where
the Gaia observable has been removed are shown. We highlight the 1σ
and 2σ percentiles and find that the majority (68%) of absolute errors
are within ±2.35 km s−1 and have relative errors below 0.55.

via a kinematic selection before applying the cluster-noise clas-
sifier (see Sect. 3.5.3) to a complete 6D phase space, includ-
ing the computed v̂r estimates. The pre-filter removes possible
contaminant stars that have vastly different 3D motion, namely
sources that differ by more than 10 km s−1 from the determined
bulk motion; hence, ||uMDV − uOBM|| < 10 km s−1.

3.5.3. Removing field star contamination

Figure 5 shows the noise removal pipeline, which consists of
two main parts. In the previous section, we discussed the first
part in which we impute missing radial velocities by assuming
the presence of a single dense co-moving population in the input
data. In the following, we discuss the second part, in which we
aim to fit cluster-noise classifiers to remove the field star content
in the combined space of heliocentric Galactic Cartesian position
and determined vMDV’s.

Combining positional and kinematic spaces (here
XYZUVW) directly puts an emphasis on one of the sub-
spaces (position or velocity) due to different value ranges (see
Sect. 3.3.3 for more details). Large axis ranges automatically
dominate the extraction as distances along these dimensions are
penalized, more drastically impacting the density estimation.
Instead of selecting a single scaling factor, we chose multiple
plausible scaling factors and compute a univariate density
distribution ρ for each one. We obtain scaling factors c1, . . . cN
by repeating the procedure discussed in Sect. 3.3.3 in Galactic
Cartesian phase space (XYZUVW), setting N to 10 (see forking
into N subprocesses in Step II in Fig. 5).

We separate the stellar population from the field star com-
ponent using a cluster-noise classifier (the classifier is motivated
and discussed in detail in Sect. 3.5.2). This classifier is applied
to the 1D density estimation ρ determined in 6D phase space,
using measured and estimated radial velocities (see the x-axis in
Fig. 6). This thresholding method results in a global isosurface
selection that is independent of positional information of sources
in the original feature space (see Fig. 1). To reduce the con-
tamination of random field star components, we employed the
β-skeleton as a locality-aware neighborhood graph from which
we delete vertices that fall below the computed density threshold
ρ0, as shown in Fig. 6. More details on this graph-based approach
are provided in the related work discussion in Appendix B.1.

Field stars account for the majority of sources in the given
samples. Thus, the number of vertices that fall below the den-
sity threshold makes up most of the graph. Removing them
disconnects the graph and splits it into multiple connected com-
ponents. We define sources within the densest (and typically the
largest) connected component as cluster members. To extract
cluster members more robustly, we computed one extraction for
a range of scaling parameters (see Sect. 3.3.3). We obtain a final
cluster catalog by removing unlikely members that appear in less
than half of the N extractions when using different scaling fac-
tors, ci (see Fig. 5).

3.5.4. Contamination and completeness estimate

The cluster-noise classifier is a discriminative model, whose con-
ditional densities (or mixture components) describe the cluster
and field star distributions. In combination with the decision
threshold ρ0, we can internally compute estimates for the field
star contamination fraction fcont and the incompleteness fraction
finc for each cluster sample.

In the fitting procedure, the number of mixture components
k is a free parameter determined by minimizing the BIC. Thus,
the discriminative model can have a different number k of Gaus-
sian components for each cluster. To formalize a consistent defi-
nition across a different number of components, we introduce the
following notations. We denote the set variables specifying the
identity of the mixture component by Z; its k components are then
Z = {z1, . . . , zk}. Individual Gaussian components can then be for-
mulated as densities conditioned on the mixture component:

p(x | zi) = N(µi, σi). (16)

The mixture density can then be written as

p(x) =
∑
z∈Z

p(z)p(x | z), (17)

where p(z) is the prior probability of the mixture component z,
also called mixture weight. The k mixture weights must add up
to one.
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The subset of components that describe the distribution of
cluster members is denoted with S . It encompasses all mixture
components whose mean (or expected value) exceeds the thresh-
old ρ0, and thus S = {z ∈ Z : E[p(x | z)] > ρ0}. The relative
complement of S with respect to Z then contains all compo-
nents describing the field star distribution; we denote this set as
B, defined by B = Z \ S .

Finally, with this formulation in mind, we can express both
the incompleteness fraction finc and contamination fraction fcont.
The incompleteness fraction, as shown in Fig. 6, is the proba-
bility of observing a sample from the cluster distribution with a
value less than ρ0:

finc =

∑
s∈S

∫ ρ0

−∞
p(s)p(x | s) dx∑

s∈S p(s)
. (18)

The contamination fraction is defined as the fraction of false pos-
itive samples in the overall cluster sample. Thus, fcont can be
expressed as the probability of observing a sample from the field
star distribution among all samples with a value larger than the
threshold ρ0:

fcont =

∑
b∈B

∫ ∞
ρ0

p(b)p(x | b) dx∑
z∈Z

∫ ∞
ρ0

p(z)p(x | z) dx
. (19)

Both finc and fcont are schematically shown in Fig. 6 for the
example of a two-component mixture.

The contamination and incompleteness are computed for
each cluster. We obtain a mean contamination estimate across all
clusters in Sco-Cen of 5.3% with a standard deviation of 3.1%
across clusters. This value agrees well with photometric contam-
ination estimates via the Gaia HRD, as described in Sect. 5 and
Appendix D.1. Although we find good agreement, we do not
completely trust the stated values due to a lack of knowledge of
systematic uncertainties.

The major source of systematic uncertainty is a deviation
from Gaussianity of any of the mixture components. Especially,
in the case of more than two mixture components, we expect that
these internal estimations have increased error rates. By depart-
ing from the paradigm of “one mixture component per signal
and background” we increase the accuracy of the model (and
ideally the obtained cluster members) at the cost of direct model
interpretability (and all of its consequences). Further uncertainty
is added via the density estimation to which the mixture model
is fit. Since we do not have access to the true underlying den-
sity f , we inevitably make mistakes by substituting it with our
estimate f̂ .

We find a mean completeness across clusters of approxi-
mately 89.2% with a standard deviation of 8.3%. Similarly to the
contamination fraction, determining the incompleteness depends
on the mixture components and density approximation. Still,
compared to the contamination fraction, the incompleteness esti-
mate is relatively high. A caveat of our noise reduction procedure
is that we reduce high-dimensional phase space information into
a univariate variable that is used to filter the data. This univariate
formulation lacks descriptions of local positional and kinematic
relationships that might help increase the completeness of our
catalog. Further, we estimate the actual value even lower, as we
find multiple connected components in the neighborhood graph
from which we only extract the main component. We also only
admit stars that pass a threshold of 50% across different scal-
ing fractions. All these decisions increase the precision of our
sample at the cost of a reduced recall. Additionally, we evaluate

the estimated completeness fraction by comparing our sample to
past extractions in the literature in Sect. 5.2. These comparisons
suggest a sample completeness of about 90% (e.g., when com-
pared to Damiani et al. 2019, Luhman 2022, or Schmitt et al.
2022), which agrees with our estimate. However, these surveys
can also not be considered complete. On the contrary, a direct
comparison shows (see Sect. 5.2) that other applications on Sco-
Cen are missing sources that SigMA is able to uncover.

Instead of comparing estimated values to past extractions, we
aim to evaluate the accuracy of internal contamination and com-
pleteness estimates of SigMA in Sect. 4.2. Using simulations,
we find that on average the contamination from field stars can
be approximated quite well using our univariate mixture model
approach. However, especially in dense cluster environments,
our approach seems to overestimate completeness. If a large por-
tion of the cluster exists in the low-density environment outside
the cluster core the density approach fails to adequately capture
the true number of missing cluster members (see Sect. 4.2.2 for
a detailed discussion).

3.6. Multi-scale clustering

The density field is the main parameter of the proposed clus-
tering method. Its topology is affected by the estimation pro-
cess, which impacts the final result. Especially the smoothing
parameter can create, on the one hand, a very rough and, on the
other hand, an over-simplified density field. The schematic Fig. 3
illustrates the dependence of the cluster number on the density
estimation process. Applying a smoothing operator generates
a family of density fields, called a scale space (Witkin 1987).
We used this scale-space concept to study the dependence of
extracted clusters on density estimation. Clusters with a long
lifetime in the scale space are preferred over, for example,
“short-lived” children.

We approximate the scale space by running SigMA N times
obtained by progressively smoothing the initial density field.
Given an ensemble of N density estimates { f̂ }i, i ∈ [0,N], we
track clusters through various density filters. To track clusters
through different levels of scale space, we used three cluster con-
nection rules based on cluster modes, which we approximate by
the densest point in a modal region. The connections we define
are the following: direct link, merge, and split.

A direct link connection denotes a connection between two
modal regions whose Jaccard similarity is larger than 50% and
both cluster modes lie in the intersection set. A merge connec-
tion is a weaker condition and is only placed if no direct link
can be established. A merge link is made when a parent clus-
ter13 contains the cluster mode of its child. If both conditions
for direct and merge links are not satisfied, a split connection is
placed between a parent and child cluster if the child contains
the cluster mode from its parent.

The emergence of critical points, or additional clusters, in
smoother versions of the scale space, is a result of the inex-
act nature of our density estimation (Reininghaus et al. 2011;
Lifshitz & Pizer 1990) as well as due to randomness introduced
by our Monte Carlo strategy. In the absence of noise, smoother
density filters result in a simplified topology. Thus, we applied
the pruning strategy introduced by Reininghaus et al. (2011)
to the resulting merge-split graph, which generates a simpli-
fied merge tree. The merge tree for our running toy data set is
schematically illustrated in Fig. 3.

13 The parent cluster resides in the i+1st level, whereas the child cluster
is from level i.
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Fig. 8. Stability versus estimated contamination rate. The contamination
estimate was determined via source positions in the HRD relative to the
25 Myr isochrone as discussed in Sect. 5, selecting potential contami-
nants from older populations. We identify a sharp drop in contamination
for low stability values that levels off at around 11%.

We extract stable components from the resulting merge tree
via a consensus clustering approach, discussed in Sect. 3.3.3. In
total, we find 60 stable clusters in the search box, while 37 are
discussed in more detail in Sect. 5 as being part of the Sco-Cen
association. We find the 23 remaining clusters to be unrelated to
the young Sco-Cen association (see Sect. 5). Often these appear
as incomplete (or truncated) cluster extractions; in particular, the
shape and position of the majority of these clusters suggest that
they extend beyond the defined search box.

The consensus approach also lets us characterize how often
individual sources appear throughout the cluster ensemble14. We
report this value as “stability” in our cluster catalog. The stability
criterion can be used as an effective measure to remove spurious
sources from the catalog. Figure 8 highlights the effect of the sta-
bility criterion on sources when empirically estimating the con-
tamination from older sources (hence likely unrelated sources)
via an HRD. The x-axis shows a given stability criterion where
we filter sources with stability> x. The y-axis shows the empir-
ical contamination estimate, determined via positions of filtered
(older) sources in the HRD. The fraction of sources to the left of
the 25 Myr isochrone is used to estimate the false positive rate
while sources to the right account for true positives (see further
details in Sect. 5 and Appendix D). Based on this result, we rec-
ommend a quality criterion of stability> 11%.

However, due to the density-based nature of SigMA, the sta-
bility criterion is strongly correlated with density. Especially
clusters with minor density enhancement over the field back-
ground are short-lived in scale space. Thus, although SigMA
detects them clearly, some clusters contain members with over-
all disproportionately small stability values causing them to fall
out of the sample for relatively low stability values (e.g., the
cluster Oph-North-Far; see Sect. 5.1.7). Therefore, we do not
recommend generally using the stability quality criterion, but

14 The cluster ensemble is the collection of N clustering solutions cor-
responding to the N density estimates.

to investigate its behavior per cluster, to get potentially cleaner
cluster samples.

3.7. Removing spurious cluster solutions

Unstable cluster solutions are automatically filtered out in our
scale space approach in Sect. 3.6. However, the distribution of
sources in the Milky Way in phase space is far from uniform.
SigMA’s job is to separate the input data space into unimodal
regions. This segmentation does not distinguish between com-
pact, clustered over-densities and long-range, low-density modes
inherent to the Milky Way distribution. We aim to remove the
latter from our cluster sample.

We assume a natural clustering of “real” and “spurious” clus-
ters in 1D density space. That means if the density of all mem-
bers across the N extracted clusters are plotted we expect a
bi-modal distribution. The modes of these distributions then cor-
respond to the real and spurious clusters.

To classify each cluster into any one category, we employed
an iterative approach that starts off by assigning all clusters to the
category real. Subsequently, we loop through all clusters sorted
by their median member density (computed in 5D phase space)
in ascending order. In each iteration i, with i ∈ {1, . . . ,N}, the
first i clusters (i clusters with lowest median density) are classi-
fied as spurious. At each step, we track the separation and com-
pactness in the 1D density space of individual members across
both groups of clusters. The more compact and well separated
the members of both groupings are – measured by the Caliński-
Harabasz score (Caliński & Harabasz 1974) – the more the clas-
sification at step i agrees with our bi-modal assumption.

We used the classification at step i, which maximizes the
Caliński-Harabasz score to characterize each cluster as real or
spurious. This classification is directly applied to each SigMA
clustering solution, hence before obtaining a consensus result
across scaling factors and scale space (see last process in SigMA
core in Fig. 9).

3.8. The SigMA pipeline

The proposed clustering method SigMA has many components
that require sensible choices in order to work together properly.
In Sects. 3.2–3.7 we justify and discuss the parameter choices
that yield the final analysis pipeline. Figure 9 shows an overview
of the full pipeline. It consists of two main parts, the SigMA core,
and two consensus clustering steps. In the following, we briefly
summarize how these individual components come together.

The SigMA core outputs a clustering result for a given den-
sity level i and velocity scale c j. It iterates through the fol-
lowing steps: First, a k-NN density estimation is computed
(see Sect. 3.3.2). Second, a gradient-based hill-climbing step
is performed that produces individual modes and saddle point
locations. The modal candidates (or clusters) at this point over-
segment the data set (see Sect. 3.2.2). Third, at each saddle point,
a modality test is applied that determines whether two neighbor-
ing modal candidates should be merged or not (see Sect. 3.2.1).
Fourth, the field star background is removed from each modal
region (see Sect. 3.5). Fifth, spurious clusters are removed from
the extraction (see Sect. 3.7).

To guarantee stable results against velocity scaling fac-
tors (see Sect. 3.3.3) and density estimation (see Sect. 3.6),
we employed a consensus clustering approach, discussed in
Sect. 3.3.3. From the cluster ensemble, we can extract a stability
value for each source in our final catalog.
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Fig. 9. Schematic illustration of the SigMA pipeline. The pipeline consists of two main parts, the SigMA core and two consensus clustering steps.
For a detailed explanation, see the main text of Sect. 3.8 and the references therein.

4. Validation

We followed a two-pronged approach to verify the proposed
clustering method SigMA. First, in Sect. 4.1 we validate our clus-
tering technique qualitatively in a case study on the Sco-Cen OB
association. We describe the results and comparisons to other
studies in Sect. 5. Second, in Sect. 4.2, the algorithm is validated
quantitatively on simulated data, where we compare SigMA to
other established clustering methods used to identify co-moving
clusters.

4.1. Validation using astrophysical knowledge

Two direct observables that can be identified in our application
on Sco-Cen (Sect. 5) serve as a validation test of the method.
First, and apart from the youngest clusters that are affected
by dust extinction, the Gaia color-absolute-magnitude diagrams
(CMDs; equivalent to observational HRDs) for the stars in each
cluster show a narrow (coeval) distribution (see the follow-up
work in Ratzenböck et al. 2023). There is no procedural reason
why this should be the case, the method does not know about the

brightness and colors of the stars. Only a meaningful selection
of co-moving stellar siblings can produce the observed narrow
sequences in the HRDs.

Another observable that serves as a test is the prominence
of massive stars associated in 2D projection with the SigMA
identified clusters, while they are often located at a central posi-
tion within the concerned clusters (e.g., αSco, βSco, δSco, and
ν Sco; see Sect. 5 and Tables 3–5). Nearby massive stars are often
too bright to have reliable measurements in the Gaia archive,
and they are also often part of multiple stellar systems, further
reducing the quality of the astrometry. The brightest are not
even in Gaia (like Antares, Ohnaka et al. 2013), while most have
been observed by Hipparcos (Perryman et al. 1997). Still, the
method finds clusters around many of the massive stars, particu-
larly in the Upper-Sco region. Based on Hipparcos astrometry
(see Sect. 5), we find strong evidence that many of these bright
stars share similar parallaxes and proper motions as the clusters
they seem to belong to in projection. This is an astrophysically
relevant result (massive stars do not form alone and are often
found at central positions), and it serves as another direct valida-
tion of the method.
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Table 1. Overview of the clustering algorithms that we test with synthetic data (simulated cluster samples) and compare to SigMA.

Algorithm Main reference Short description For example, used by (b)

DBSCAN Ester et al. (1996) A density-based Castro-Ginard et al. (2019, 2020, 2022), Zari et al. (2019),
Clustering algorithm Fürnkranz et al. (2019), Hunt & Reffert (2021)

HDBSCAN (a) Campello et al. (2013) A hierarchical density-based Kounkel & Covey (2019), Kounkel et al. (2020),
Clustering algorithm Hunt & Reffert (2021, 2023), Kerr et al. (2021)

Notes. The results are listed in Table 2. (a)See Appendix B.1 for further discussion on the HDBSCAN algorithm. (b)The reference lists are not
exhaustive literature reviews but are intended to highlight the relevance of the proposed comparison methods.

4.2. Validation using simulations

To objectively investigate the effectiveness of new clustering
algorithms, synthetic data with known ground truth information
facilitates the comparison to other clustering techniques. Since
SigMA is tuned to astrophysical phase space data, we want to test
its efficacy on simulations that approximate observational data
as closely as possible. Therefore, simulated data should repli-
cate the data model, content, volume, uncertainties, and selection
effects of Gaia data as closely as possible.

To our knowledge, the Gaia Early Data Release 3 (EDR3)
mock catalog by Rybizki et al. (2020) best meets these criteria.
In particular, the catalog contains a large, realistic open clus-
ter sample with internal rotation and corresponding uncertain-
ties. Although the cluster structure of the open cluster sample
differs from Sco-Cen, access to ground truth data and realis-
tic Gaia selection effects and content provides a firm validation
basis. To test SigMA’s ability to separate clusters in dense cluster
environments, commonly found in young OB associations and
star-forming regions such as Sco-Cen (Sect. 5) or Orion (e.g.,
Chen et al. 2020), we aim to create a derived data set from the
original mock catalog that mimics these conditions.

We applied the same error cuts to mock and real data to
increase comparability between our qualitative and quantitative
tests, as described in Eq. (2). We emphasize that the following
results are, thus, conditioned on the given quality criteria. Hence,
the reported classifier performances and empirically determined
contamination and completeness scores should always be under-
stood in the context of these quality criteria. Therefore, future
use of SigMA should aim to meet the same criteria or, in case
of modifications, follow the validation protocol discussed in
Sects. 4.2.1 and 4.2.2 for the new filter setup.

In the following sections we describe the comparison of
results in detail, particularly the data used, the algorithms against
which we compare SigMA, and the validation results.

4.2.1. Open cluster sample

The Gaia EDR3 mock catalog (Rybizki et al. 2020) is extensive.
As it aims to reproduce Gaia data realistically, it contains sim-
ulated measurements on over 1.5 billion sources and over 1000
open clusters compiled from the catalogs of Kharchenko et al.
(2013) and Cantat-Gaudin et al. (2018b). We need to reduce the
data size to a manageable subset to validate SigMA and compare
different clustering algorithms. Therefore, we limit the data to a
range of 200 pc around the Sun, which yields uncertainty charac-
teristics similar to our Sco-Cen box sample. Applying the quality
criteria Eq. (2) results in the final test catalog size of 2 682 883
samples, of which 18 682 are part of 12 open clusters15. The

15 As no fidelity information is provided in the EDR3 mock catalog,
this quality flag was not reproduced on mock data.

mock catalog does not contain the full 5D astrometric uncer-
tainty covariance matrix that SigMA uses. We substituted miss-
ing values with real measurements from Gaia DR3. Each mock
sample was randomly paired with a source within our Sco-Cen
box (see Sect. 2), whose values it adopts.

This simulation allows our proposed analysis method to be
tested for accuracy. Importantly, we must highlight its capac-
ity to identify clusters in positional and kinematic data in con-
trast to established analysis methods. We limit our comparison
to the two relevant clustering methods (DBSCAN, HDBSCAN)
as listed in Table 1, which are considered among the most
promising candidates for stellar cluster analysis in a meta-study
by Hunt & Reffert (2021).

Since SigMA’s parameters are tuned to deal specifically with
Gaia data, we employed a grid search to find suitable parametriza-
tions for each of the three clustering algorithms. This strategy
measures the peak performance these clustering methods can
achieve. A comparison against the best performance results allows
for a discussion of methodological advantages and disadvantages
rather than reflecting poor parameter selection. A detailed discus-
sion on the parameter search is provided in Appendix B.8.

We report the performance of the best model across our
search to facilitate a fair comparison. The performance itself is
measured using the following clustering validation metrics: the
normalized mutual information (NMI) score (Strehl & Ghosh
2002), adjusted mutual information (AMI; Vinh et al. 2010),
and adjusted rand index (ARI; Hubert & Arabie 1985). We
also report on classification metrics that are easier to inter-
pret, such as true positive rate or recall, precision, accu-
racy (henceforth denoted as ACC), balanced accuracy (BACC;
Brodersen et al. 2010), and the Matthews correlation coefficient
(MCC; Matthews 1975). In addition, we report the total number
of identified clusters, Ntot, as well as the number of non-noise
clusters, Ncluster, that are found to coincide with a toy cluster
instead of field members. Similar to precision and recall, we
also report contamination and completeness. In contrast to pre-
cision and recall, we computed the average cluster contamina-
tion and completeness only for clusters that coincide with a true
cluster (i.e., for the Ncluster identified non-noise clusters). Thus,
these measures are not influenced by large false positives. When
Ncluster = Ntot the completeness is exactly equal to recall and
contamination becomes 1 – precision. The resulting numbers are
summarized in Table 2.

Only a fraction of sources, less than 1%, are located in clus-
ters. Hence, many of the above-proposed validation metrics will
report high values as long as most field stars are clustered in the
same group. We remove correctly identified field stars before
computing the validation metrics to prevent reporting on artifi-
cially inflated clustering scores. By removing this “true nega-
tive” component without removing field stars labeled as cluster
members (false positives) and cluster members identified as field
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Table 2. Test results on simulated cluster samples.

Open cluster sample (N = 12) (a) Compact cluster sample (N = 37) (b)

SigMA DBSCAN HDBSCAN SigMA DBSCAN HDBSCAN

NMI 0.95 0.94 0.86 0.60 ±0.02 0.39 ± 0.06 0.33 ± 0.16
AMI 0.95 0.94 0.86 0.56 ±0.01 0.38 ± 0.06 0.32 ± 0.16
ARI 0.96 0.95 0.74 0.38 ±0.03 0.11 ± 0.03 0.08 ± 0.06
Precision 0.97 0.98 0.74 0.64 ±0.05 0.23 ± 0.05 0.22 ± 0.15
Recall 0.98 0.96 0.76 0.47 ±0.04 0.25 ± 0.03 0.20 ± 0.06
Contamination 0.03 0.02 0.08 0.24 ±0.13 0.13 ±0.12 0.25 ± 0.22
Completeness 0.98 0.96 0.92 0.76 ±0.15 0.79 ± 0.24 0.76 ± 0.21
ACC 0.97 0.96 0.76 0.47 ±0.04 0.25 ± 0.03 0.20 ± 0.06
BACC 0.90 0.88 0.88 0.51 ±0.04 0.16 ± 0.03 0.18 ± 0.07
MC 0.96 0.95 0.76 0.55 ±0.04 0.23 ± 0.04 0.16 ± 0.11
Ntot 12 12 14 26.8 ±2.0 10.0 ± 1.7 24.2 ± 4.8
Ncluster 12 12 12 24.1 ±1.7 10.0 ± 1.7 12.0 ± 5.5

Notes. Bold-faced numbers indicate the best performance given a specific evaluation metric. The three clustering methods, SigMA, DBSCAN,
and HDBSCAN, are applied to two data sets. (a)The open cluster sample contains 12 clusters. It is a subset of the Gaia mock EDR3 cata-
log (Rybizki et al. 2020). (b)The compact cluster samples contain 37 clusters. It mimics the cluster environment of Sco-Cen, where groups are
densely packed together. The 10 compact cluster samples are generated in a random effects model, and the resulting distribution varies substan-
tially across realizations. To estimate the performance of clustering algorithms on the compact cluster sample, we average performances across
ten individual samples. We report the mean and standard deviation of performance scores.

components (false negatives), the reported scores are a conserva-
tive estimate of the algorithms’ actual performances.

The results are summarized in Table 2. All algorithms can
recover the 12 clusters within the data set. We find that the perfor-
mance of SigMA and DBSCAN are essentially equal – with rela-
tively high evaluation scores – while outperforming HDBSCAN.
We find that HDBSCAN (within the parameters we searched)
identifies fewer members while also identifying two false posi-
tives (i.e., two large extra clusters that entirely contain field stars).

The access to ground truth data also allows us to test internal
measurements of contamination and completeness estimates. We
find a true mean contamination rate of 2.6±0.7% across the twelve
identified clusters. SigMA’s internal estimation is slightly lower
than that at a mean contamination rate of 1.1 ± 0.4%. We find an
even better agreement between true and estimated completeness
values. The true mean completeness rate is 98.3 ± 0.7%, almost
identical to SigMA’s internal estimation of 98.4 ± 0.2%.

Although the true contamination value is outside the 1σ confi-
dence interval, the estimated value is still very close to the true one
in absolute terms. In the open cluster sample, the internal measure-
ments provide a surprisingly good approximation given that we
have not explicitly modeled signal and background in univariate
density distribution but assumed a simple mixture of Gaussians.

The high reported accuracy across all clustering methods
highlights the nature of open clusters. They appear as salient
over-densities in phase space, making their detection fairly easy.
This situation contrasts with the complex structure that con-
stitutes Sco-Cen. Distinguishing more densely packed clusters
from each other is a nontrivial task. SigMA was created with the
intention of an interpretable cluster definition, which is put to
the test, especially in such environments. Therefore, we aim to
create a test data set reproducing densely packed piles to put our
analysis tool through its paces.

4.2.2. Tightly packed cluster environment

To our knowledge, there is no realistic (replicating data model,
content, volume, uncertainties, and selection effects of Gaia

data) simulation of Sco-Cen-like, densely packed associations
that can be used to validate SigMA in densely packed clus-
ter environments. Moreover, there are no similar (or any) star-
forming regions where a consensus has been reached on the
number of true clusters along with their members. Hence, we
created a derivative toy data set from the EDR3 mock catalog,
which simulates groupings in tightly packed arrangements. We
refer to this newly generated mock catalog as the “compact clus-
ter sample”.

The biggest unknown in creating this sample concerns the
cluster details. In particular, their number, location, extent, and
respective size. However, the application to Sco-Cen has already
produced a cluster sample that can be considered when generat-
ing toy data, as it provides a candidate set of these quantities.

Two conflicting objectives pose challenges for sampling with
known cluster sizes. On the one hand, the cluster sample should
avoid strong correlations with results on Sco-Cen (for a discus-
sion of results, see Sect. 5). We want to avoid reproducing pre-
vious results as it would favor the SigMA clustering objective
over other alternative formulations and inhibit an objective com-
parison across methods. On the other hand, the compact clus-
ter sample should aim to represent reality faithfully. Since no
ground truth exists either on stellar clusters or in the form of
dedicated simulations that reproduce such dense cluster struc-
tures, we anchor our simulations on reality by considering our
Sco-Cen extraction and other literature results. To balance over-
confidence in the given results with an accurate description of
reality, we perturb the obtained cluster sizes to avoid an unduly
high correlation with SigMA and literature results.

In the following we describe how we use these general clus-
ter details as a starting point to generate the compact cluster
sample: (1) number of sources, (2a) mean position (in helio-
centric Galactic Cartesian coordinate frame, XYZ), (2b) mean
space velocity (in the heliocentric Galactic Cartesian coordinate
frame, UVW), mean statistical dispersion of objects in the clus-
ter in (3a) positional and (3b) velocity space.

To introduce small and medium-sized deviation from the
selected sample, we treat the number of sources and statistical
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dispersion as a normal distribution centered on the measured
value with a relative variance of 25%. We employed a different
strategy to sample new cluster means in position and velocity.
Typically, neighboring cluster centroids in the combined posi-
tional and velocity space are way within the relative variance of
25%. Thus, updated centroid positions would commonly lie out-
side the original cluster boundary, drastically interfering with the
initial cluster distribution. Instead, we sample centroid positions
from a 50% subset of each cluster, introducing variations that
guarantee to retain the overall structure.

After sampling a set of cluster quantities, we pair each of the
37 extracted Sco-Cen clusters (see Sect. 5) with an open cluster
from the mock EDR3 catalog. We used 15 open clusters within
250 pc from the Sun. This selection provides access to a slightly
more diverse cluster sample showing measurement uncertainties
similar to the initial Sco-Cen clusters. As different cluster sizes
show distinct morphological features – a small cluster can typi-
cally not be reproduced by down-sampling a large one to its size
– we aim to pair clusters based on member size. A given Sco-
Cen cluster, cs, with ns sources has the following probability of
being paired with one of the N synthetic mock clusters, ck, with
nk sources, where k ∈ [1, . . . ,N]:

p(ck |cs) =
(ns − nk)2∑
i(ns − ni)2 . (20)

Thus, on average Sco-Cen clusters are paired with similar-sized
clusters from the mock catalog while maintaining a nonzero
probability of being paired with more, unlike clusters. To better
understand variations in the number of clusters across random
instances, we maintain a fixed cluster count of 37.

For each cluster, the mock counterpart is scaled to the ran-
domly sampled dispersion in position and velocity space (sepa-
rately), randomly down-sampled to its corresponding (randomly
determined) size, and positioned at the corresponding mean in
6D phase space. Subsequently, the synthetic clusters are embed-
ded into the remaining field distribution. Finally, we project the
space velocities to the tangential velocity plane, compute right
ascension (α, deg), declination (δ, deg), and parallax ($, mas),
randomly remove about 62% of radial velocity measurements
and apply the coordinate and quality criteria16 from Eq. (1)–(2)
to reflect the clustering conditions of Sco-Cen, as described in
Sect. 2.

To evaluate and compare SigMA’s clustering performance to
alternative algorithms, we generate 10 compact cluster samples
and report mean performance scores across these realizations.
The results are summarized in Table 2. Compared to results
on the open cluster sample, SigMA shows a significantly higher
score than competing algorithms, achieving only half of SigMA’s
performance on average. The performance of DBSCAN and
HDBSCAN on the compact cluster sample is approximately
similar. Compared to DBSCAN, we find that top-performing
HDBSCAN runs again falsely identify clusters of field stars
as clusters in the data set. On average, HDBSCAN finds as
many false positives as true positives. SigMA, on the other hand,
can, on average, identify about twice as many subgroups as
other algorithms while keeping the relative number of false
positives low.

Although we can highlight SigMA’s performance in these
compact cluster agglomerates compared to DBSCAN and
HDBSCAN, the performance values are drastically worse than
in the open cluster sample. We can partially attribute the poor

16 See also Sect. 4.2 for a brief discussion on quality filters and future
use.

performance to the tough clustering challenge created by the
randomized process. By randomly perturbing mean cluster posi-
tions, neighboring clusters easily merge, decreasing the maxi-
mally achievable performance. We also find that some clusters
(on average, two to three populations) can no longer be identi-
fied as their density is indistinguishable from the field. Further,
the clusters’ extent in 5D is scaled to approximate Sco-Cen devi-
ations, which reliably reproduces the cluster core. However, in
some cases, a considerable part of the cluster extends far (up to
over 100 pc) beyond traditional Sco-Cen boundaries. The density
of these stars compared to the field and their distance to the clus-
ter core makes them impossible to detect with the three tested
algorithms. Although a very tough clustering challenge, it still
provides a good test bed for algorithms applied to Sco-Cen-like
cluster environments.

Besides the clustering performance, we again compare true
to estimated contamination and completeness estimates. We find
a true mean contamination rate of 23.7 ± 13.1% across the, on
average, 24 identified clusters. SigMA’s internal estimation on
the compact cluster sample is significantly lower with a mean
contamination rate of 6.8 ± 3.4% (although ∼7 times higher
than in the open cluster sample). As discussed above, merg-
ing nearby clusters into a single indistinguishable cluster dras-
tically increases the contamination, a factor that SigMA cannot
account for. In contrast, SigMA can only control the contamina-
tion of low-density field stars and not cross-contamination (the
major contributor) from other clusters. When we ignore cross-
contamination from other clusters and focus purely on contami-
nation from field stars, the true contamination fraction becomes
8.2 ± 4.1%, close to the internal value of 6.8 ± 3.4%. SigMA’s
internal estimate on the real Gaia DR3 data is about 5.3 ± 3.1%
(see Sect. 3.5.4), which is well within 1σ uncertainties of both
estimated and true values determined from mock data.

The true mean completeness rate is 76.2 ± 15.2% while
SigMA’s internal estimation is 89.1 ± 2.0%. Ignoring cross-
contamination between clusters, the total fraction of cluster
members SigMA is able to pick up is 81.4 ± 1.2. Although the
mean total completeness is only slightly above the average per
cluster completeness rate and does not match internal predic-
tions, the result is relatively stable across different resampled
data sets. On the compact cluster sample SigMA (and to an even
greater extent, DBSCAN and HDBSCAN) cannot find the large
source fraction far outside the central cluster region. This frac-
tion is possibly exaggerated, considering the young nature of
Sco-Cen sources (because we used open-cluster analogs to build
the compact cluster catalog). SigMA’s internal completeness esti-
mate on real Gaia DR3 data toward Sco-Cen is approximated
with 89.2 ± 8.3% (Sect. 3.5.4), which is slightly over-estimating
completeness when compared to the true value of the simulated
data, while still comparable within the uncertainties.

The substantial agreement of SigMA’s internal metrics with
true values in the open cluster sample is in stark contrast to
the large discrepancy between estimated and true values in the
compact cluster sample17. While the contamination estimate
yields satisfying results if only field star contamination is con-
sidered, the completeness estimate likely systematically under-
estimates the low-density cluster component of stellar clusters.
Thus, internal contamination and completeness estimates should

17 We want to emphasize here once again that these results are condi-
tioned on a given set of quality criteria. We strongly suggest reaffirming
internal contamination and completeness estimates through simulations
(as discussed in Sect. 4.2) when modifying these quality criteria in future
uses of the SigMA software.
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only be used as rough first approximations of the stellar content of
detected clusters. To obtain a better understanding, especially of
the completeness fraction, we call to consider additional member-
shipanalysis tools suchasUPMASK(Krone-Martins & Moitinho
2014), BANYAN (Gagné et al. 2018a), or Uncover (Ratzenböck
et al. 2020).

5. Application to Sco-Cen

We applied SigMA to Gaia DR3 data inside a box of about
107 pc3 containing the Sco-Cen OB association, as defined in
Sect. 2. The box was chosen to include the classical Blaauw
definition of Sco-Cen, including the classical subgroups Upper-
Scorpius (US), Upper-Centaurus-Lupus (UCL), and Lower-
Centaurus-Crux (LCC), and to go beyond them and include the
molecular cloud complexes of Pipe, Corona Australis (CrA),
Chameleon (Cham), and three stellar clusters to the Galactic
northeast of Sco-Cen, which we put in the separate North-
east group (NE). Some of these regions were tentatively asso-
ciated with Sco-Cen in the past (e.g., Lépine & Sartori 2003;
Sartori et al. 2003; Preibisch & Mamajek 2008; Bouy & Alves
2015; Kerr et al. 2021).

In this paper, we discuss the SigMA extracted young stellar
clusters in Sco-Cen, which are part of the .20 Myr Sco-Cen star
formation event (Pecaut et al. 2012), and their connection to pre-
vious work. In a follow-up study (Ratzenböck et al. 2023) we
discuss in more detail the ages of the individual SigMA clusters
and the star formation history of the Sco-Cen complex.

In total SigMA extracts 60 clusters inside the defined
search box. Of these, 23 clusters are older populations with
ages> 20 Myr, or which are kinematically unrelated. These
older clusters include for example, the well-studied IC 2602
(∼30 Myr; e.g., Randich et al. 1995; Stauffer et al. 1997;
Dobbie et al. 2010; Damiani et al. 2019; Meingast et al. 2021),
or the Hyades, β Pictoris, Platais 8, Platais 9, Platais 10,
IC 2391, Alessi 9, Alessi 13, Tucana-Horologium, Coma-
Berenices, Volans-Carina, or NGC 2451A (e.g., Riedel et al.
2017; Gagné et al. 2018b,c; Gagné & Faherty 2018; Sim et al.
2019; Fürnkranz et al. 2019; Cantat-Gaudin & Anders 2020;
Meingast et al. 2021; Kerr et al. 2021; Galli et al. 2021a;
He et al. 2022). These clusters generally occupy distinct
velocity spaces, different from the bulk motion of Sco-Cen.
Moreover, the majority of these clusters are truncated by the
borders of our defined box; hence, they are incomplete, which is
of no consequence to this study. In this work, we focus solely
on the young Sco-Cen complex (1) to get a more complete
picture of the substructure of this important nearby association,
(2) to evaluate the differences to previous studies on Sco-Cen
(Sect. 5.2), and (3) to highlight the capability of SigMA to
untangle distinct clusters in a dense environment containing
overlapping populations in space, which is especially true
for young stellar associations like Sco-Cen. The 23 older or
unrelated clusters are not discussed further here, although they
might be related, or not, to Sco-Cen at larger scales (e.g., “blue
streams”; Bouy & Alves 2015). We will discuss these older
clusters in future work.

We find that 37 stellar clusters are associated spatially and
kinematically with the Sco-Cen OB association, containing in
total 13 103 stellar cluster members, which will be discussed in
more detail in this section. Figures 10 and 11 show the distri-
bution of the 37 Sco-Cen SigMA clusters projected in Galactic
coordinates. Figure 12 shows the distribution of the clusters in
3D space in a heliocentric Galactic Cartesian coordinate frame

(see also the interactive 3D version18 online and Figs. E.1–E.5
for a better appreciation of individual clusters). The 37 clusters
seem to form the continuous body of the Sco-Cen association,
beyond Blaauw’s original three subgroups’ boundaries.

Figure 13 shows the location of the SigMA clusters in the tan-
gential velocity plane as observed from the Sun (vα/vδ) and also
relative to the LSR (vα,LSR/vδ,LSR). Since the clusters partially
occupy similar velocity spaces in the velocity planes, we also
provide online an interactive 2D version of this figure, allowing
a better appreciation of 2D kinematical properties of the clusters
in Sco-Cen (see also Figs. E.1–E.5). The 37 young clusters all
fall on a connected loop-like pattern in tangential velocity space
(Fig. 13, left panel), a pattern largely created by the reflex motion
of the Sun. This is highlighted in Fig. C.1, showing that these
projected motions are expected for clusters at Sco-Cen posi-
tions and distances. To avoid this pattern caused by the Sun’s
motion, we additionally transform the tangential velocities to
velocities relative to the LSR, using the standard solar motion
from Schönrich et al. (2010; see Sect. 2). This is shown in Fig. 13
(right panel), where we can see that the clusters now occupy a
more compact velocity space. In particular larger clusters, which
are stretched over larger areas in the sky, show a smaller velocity
dispersion after the LSR conversion (see Appendix C). The 2D
kinematical properties of individual clusters can be better appre-
ciated when investigating the online interactive 2D version of the
figure, where both velocity spaces can be compared directly.

The Sco-Cen association, as extracted with SigMA, reaches
well below the Galactic plane, as was indicated by previous
works (e.g., Kerr et al. 2021) and is now further confirmed here.
This includes regions not traditionally associated with Sco-Cen,
like Pipe, CrA, Cham, and clusters toward the Galactic northeast
(NE), including a cluster connected to the L134/L183 clouds.
Moreover, other well-known stellar clusters, traditionally not
assigned to Sco-Cen but later suggested to be associated with
it, were picked up by SigMA, like ε Cham and ηCham (e.g.,
Mamajek et al. 1999, 2000; Fernández et al. 2008), which are
added here to the Sco-Cen complex.

The relatively young β Pictoris stellar cluster (βPic; e.g.,
Fernández et al. 2008; Crundall et al. 2019; Miret-Roig et al.
2020, age ∼18–20 Myr) was also picked up by SigMA in the
selection box. As mentioned above, we decided not to include
this young local association as part of our final sample of 37 stel-
lar clusters. The SigMA extraction of βPic covers only one side
of the known population as defined in Miret-Roig et al. (2020).
This is likely due to the larger extent of βPic in the sky (partially
outside of our box boundaries) and due to the relatively close dis-
tance to the Sun (average distance of about 40 pc), which makes
it more difficult to extract members from the 5D (or 5.5D) phase
space as used by SigMA in this work as the stars are distributed
across the sky as seen from Earth (the Solar system is located
inside some of these nearby young associations).

The majority of the 37 clusters can be related to previously
identified clusters from the literature, which are often larger scale
structures containing several of the SigMA clusters (see compar-
isons to the literature in Sect. 5.2). The rich substructure identified
by SigMA also includes clusters with no clear counterpart in pre-
vious works. We decided to name such clusters after their location
in the sky (based on constellation) or after the brightest star that is
seen in projection to a cluster and where we feel confident that it is
part of a cluster (see Sect. 5.1 and Tables 3 and 5). We often find

18 Clusters can be viewed separately by double-clicking on the cluster
name in the legend. By clicking once on another cluster it can be added
to the visible clusters, and so on.
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Fig. 10. Distribution of the 37 SigMA clusters in Sco-Cen, projected in Galactic coordinates. Traditionally, the Sco-Cen OB association is separated
into US, UCL, and LCC, marked with gray dashed lines. The clusters extracted with SigMA reveal a more complex substructure of Sco-Cen than
initially proposed by Blaauw (1946), and they show a more extended spatial distribution that includes the CrA, Pipe, and Cham regions and
additional stellar clusters toward the northeast (NE). The clusters are ordered in the legend by region, as given in Table 3. See the interactive 2D
version online or Fig. 11 for a separate view of each cluster. For a better visualization of the clusters’ distribution, see the interactive 3D version
online (Fig. 12).

bright B-stars toward cluster centers at approximately the same
distance and proper motion, in itself a validation of the SigMA
algorithm, as many of these bright stars are not in Gaia (but only
in Hipparcos). We used Hipparcos astrometry (van Leeuwen
2007) to tentatively associate bright B-stars to the new clusters
and list them and their astrometric properties in Table 5, showing
the HIP ID and the Hipparcos astrometry. This table allows a
direct comparison with the average properties of the SigMA clus-
ters in Tables 3–4. For the cases where there is a reasonable match,
we name the cluster with the name of the bright B-star19. In some

19 This approach seems valid in particular for US, since also other
authors, like Miret-Roig et al. (2022a) or Briceño-Morales & Chanamé
(2023), independently decided for similar cluster names.

cases, we name the clusters after their location in constellations.
Additionally, we index the stellar clusters within this work from
1 to 37 as given in Col. “SigMA” in Table 3.

Figure 14 shows the SigMA cluster members in a Gaia CMD
(similar to the HRD), confirming the youth of most sources.
In Appendix D.1, we give more details on the chosen photo-
metric quality criteria and the selection conditions to estimate
the contamination from older populations or field stars. We
find an excess of older low-mass sources that visibly separate
from the Sco-Cen population, potentially false positive Sco-Cen
members. We used a 25 Myr isochrone (to allow for random
scatter) to separate “younger” Sco-Cen members from “older”
populations or field stars as shown in Fig. 14 (middle panel).
This gives a rough estimate for a contamination fraction of
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Fig. 11. Distribution of SigMA clusters in Sco-Cen, projected in Galactic coordinates, stratified by cluster membership. Compared to Fig. 10, the
small multiples highlight the distribution of individual clusters in the Sco-Cen complex. The color coding represents the seven regions: US (orange),
UCL (blue), LCC (red), Pipe (green), CrA (magenta), Cham (cyan), and NE (yellow).

about 4–10%, depending on the photometric quality criteria (see
details in Appendix D.1 and Table D.1). This contamination frac-
tion is similar to the estimate in Sect. 3.5.4. The influence of the
stability that SigMA assigns each cluster member can be seen

in Fig. 8, where we show how different stability cuts influence
the fraction of older sources, as estimated in Fig. 14. The trend
in Fig. 8 suggests that a cut at about 11% would give a cleaner
cluster membership selection and a lower contamination fraction
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Fig. 12. 3D distribution of the 37 SigMA Sco-Cen clusters in heliocentric Galactic Cartesian coordinates. The Sun is at (0,0,0). Colors and labels
are as in Fig. 10. See also the interactive 3D version online and Figs. E.1–E.5, which allow a better appreciation of individual cluster properties. By
double-clicking on a cluster in the legend of the interactive version, the selected cluster can be isolated; by hovering over data points, the cluster
membership and observed l, b, d position of a source becomes visible.

(Appendix D.1) since such a cut over-proportionally influences
the older sources. However, a stability cut would also deliver an
overall less complete sample.

Figure 14 (right panel) shows that there could be up to
19% of substellar candidates in the SigMA Sco-Cen sample,
selected with an isomass line at 0.08 M� from Baraffe et al.
(2015, hereafter BHAC15; see Appendix D.2). In the future,
more complete samples of the individual clusters can be obtained
by using the known members as training sets (e.g., using
Uncover, Ratzenböck et al. 2020). Knowing the brown dwarf
population will allow the construction of more complete ini-
tial mass functions beyond the hydrogen burning limit and a

better characterization of the mass of the individual clusters (e.g.,
Miret-Roig et al. 2022b).

5.1. Overview of the seven subregions in Sco-Cen

In the following, to help compare SigMA results with the litera-
ture, we give a brief overview for each subregion within Sco-Cen
(US, UCL, LCC, Pipe, CrA, Cham, and NE). We then give a
moredetailed comparison to recent works in Sect. 5.2. The listed
seven subregions include four regions that are not a traditional
part of the Sco-Cen OB association, namely CrA, Pipe, Cham,
and NE clusters, while we find them to be part of Sco-Cen
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Fig. 13. Tangential velocity distribution of the 37 SigMA clusters. Colors and labels are as in Fig. 10. Left: Observed tangential velocities along α
and δ are strongly influenced by the Sun’s reflex motion, while stellar clusters at similar distances and with similar space motions are arranged in
a loop-like pattern. Sources at l ∼ 0◦ are located in the lower-right part of the figure, and sources at l ∼ 290◦ in the upper-left part of the figure (see
Fig. C.1). Right: Tangential velocities corrected for the Sun’s motion, and hence relative to the LSR. The correction reduces the projection effects
of the observed tangential stellar motions. See the interactive 2D version online and Figs. E.1–E.5 for a better appreciation of the 2D kinematical
properties of the clusters in Sco-Cen.

because they are co-moving with the complex itself, and are
likely within the 20 Myr age cut we used for the association.
Even if we assign each stellar cluster to one of the seven sub-
regions, we stress that this classification should not be seen as
physically distinct regions inside Sco-Cen, but simply to help
compare our results with the literature.

5.1.1. Upper Scorpius (US)

Toward US we identify nine clusters containing in total 3596
stellar sources, which are partially extending beyond the tradi-
tional borders (Fig. 10). Of these nine clusters, seven appear
higher surface density and tend to be associated with promi-
nent B-stars, as already pointed out above, namely ρOph/L1688,
βSco, δSco, ν Sco, σSco, Antares, and ρSco (see Tables 3–5).
The remaining two clusters appear more extended, which we
name US-foreground and Scorpio-Body.

The clusters ρOph/L1688, Antares, and ρSco show signif-
icant overlap in the same volume in space, while separating in
velocity space. In a recent paper (Grasser et al. 2021) we studied
the ρOph/L1688 cluster with Gaia EDR3 data and identified two
kinematically distinct populations within the same volume (Pop 1
and Pop 2). These two populations coincide with theρOph/L1688
and Antares clusters, respectively. In detail, the cross-matched
Pop 1 sample contains ∼93% of the ρOph/L1688 group and
few matches with other clusters (Antares, σSco, βSco, δSco).
The cross-matched Pop 2 sample contains ∼75% of the Antares
group and few matches with other clusters (ρSco, σSco, US-
foreground). Luhman (2022) point out that “new” ρOph/L1688
members in Grasser et al. (2021) have already been identified pre-
viously by other literature as being part of US. We clarify here
that the new sources in Grasser et al. (2021) refer to sources not
previously assigned as members of the young ρOph/L1688 star-
forming event. The two intertwining distinct populations (both
containing new sources) within the same volume have been first

studied in detail in Grasser et al. (2021). In this work, we identify
another stellar population, ρSco, which also seems to occupy a
similar volume in space, partially overlapping with the two pop-
ulations while having distinct velocities from these.

The group US-foreground is located in front of the more com-
pact clusters, visible in 3D space (Fig. 12), hence the chosen
name. Finally, the Scorpio-Body group extends from US toward
the Galactic South, beyond the traditional borders of US, with a
significant fraction located in UCL and in the direction of CrA
(Sect. 5.1.5). It spans the Scorpius constellation’s central body,
hence the name. The nine clusters toward US reveal a complex
star formation history, which will be further discussed in future
work.

5.1.2. Upper Centaurus Lupus (UCL)
We identify rich substructure within UCL separated into
11 SigMA clusters (5935 stellar sources), as listed in Table 3. The
most prominent cluster in the region is V1062 Sco (Röser et al.
2018), lying toward the far side of Sco-Cen. This cluster
was picked up easily by visual selection methods (e.g., by
Damiani et al. 2019 or Luhman 2022; see Sects. 5.2.1, 5.2.4).
We identify a second cluster close to V1062 Sco, which we
call µSco, since its members are scattered around the bright
B-star * mu01 Sco. We find that the positions and velocities
of the two SigMA clusters are very similar, and members of
both clusters are part of V1062-Sco-selections in previous work
(Sect. 5.2), also named UPK 640 in Cantat-Gaudin & Anders
(2020). The star * mu01 Sco, which is the name-giver of µSco
lies in the center of the cluster, while the star * mu02 Sco is
part of the SigMA-selected members for V1062 Sco, located at
the periphery of this cluster. This suggests a possible connection
between the two clusters, but this statement is tentative.

Lupus 1–4 appears correlated with regions of high dust
column-density, matching with previous selections of Lupus–3
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Table 3. Overview of the 37 SigMA clusters in Sco-Cen, assigned to seven subregions (Col. 2).

SigMA Region Group name Brightest star (a) Nr. l b $ d X Y Z
(deg) (deg) (mas) (pc) (pc) (pc) (pc)

1 US ρ Oph/L1688 * rho Oph 535 353.20+0.57
−0.81 17.09+1.24

−0.81 7.20+0.23
−0.28 139+6

−4 132+6
−4 −16+1

−2 41+3
−2

2 US ν Sco * nu Sco 150 354.46+0.81
−1.03 22.86+0.85

−0.92 7.18+0.16
−0.20 139+4

−3 128+3
−3 −12+2

−3 54+2
−2

3 US δ Sco * b Sco 691 350.25+2.11
−3.66 22.18+1.50

−1.91 7.03+0.20
−0.25 142+5

−4 130+5
−4 −22+5

−9 54+4
−4

4 US β Sco HD 142883 285 353.21+1.48
−1.26 23.53+1.54

−3.08 6.49+0.19
−0.25 154+6

−4 141+7
−5 −17+4

−4 61+5
−6

5 US σ Sco * c02 Sco 544 351.13+1.23
−2.34 17.87+1.92

−2.31 6.29+0.23
−0.26 159+7

−6 149+8
−7 −24+4

−6 49+4
−6

6 US Antares HD 146001 502 352.79+2.18
−2.28 17.22+2.83

−2.71 7.21+0.45
−0.44 139+9

−8 132+9
−9 −17+5

−6 41+5
−6

7 US ρ Sco * rho Sco 240 349.31+3.85
−4.77 18.29+1.80

−2.76 7.21+0.47
−0.36 139+7

−8 129+8
−10 −24+9

−11 43+5
−6

8 US Scorpio-Body HD 150638 373 349.36+3.32
−2.49 7.32+4.09

−7.01 7.08+0.91
−0.58 141+13

−16 137+11
−15 −26+9

−7 17+13
−17

9 US US-foreground HD 145964 276 348.81+5.68
−3.80 21.04+3.35

−3.46 9.05+0.67
−0.74 110+10

−8 102+9
−7 −20+9

−6 39+8
−7

10 UCL V1062-Sco * mu02 Sco 1029 343.11+1.35
−4.41 4.69+1.53

−1.50 5.66+0.23
−0.24 177+8

−7 168+7
−8 −51+5

−14 14+5
−4

11 UCL µ Sco HD 151726 54 346.19+0.95
−0.65 3.90+0.48

−0.75 6.07+0.20
−0.09 165+3

−5 160+3
−5 −40+3

−1 11+1
−2

12 UCL Libra-South HD 138343 71 341.77+3.12
−4.68 27.80+1.07

−1.42 6.34+0.30
−0.19 158+5

−7 132+6
−9 −45+9

−8 73+4
−6

13 UCL Lupus 1-4 * LL Lup 226 339.51+1.15
−2.72 9.44+3.59

−0.99 6.27+0.16
−0.22 160+6

−4 147+6
−4 −55+3

−7 26+11
−3

14 UCL η Lup * eta Lup 769 339.83+6.08
−4.45 10.71+3.13

−4.50 7.37+1.04
−0.46 136+9

−17 124+8
−13 −47+15

−10 25+8
−11

15 UCL φ Lup * phi02 Lup 1114 334.17+4.39
−4.22 17.69+3.70

−3.78 7.65+1.06
−0.78 131+15

−16 112+12
−16 −54+10

−9 40+9
−10

16 UCL Norma-North HD 143215 42 331.12+4.01
−2.98 6.39+2.19

−6.64 9.44+0.80
−0.56 106+7

−8 92+6
−5 −50+9

−9 11+4
−12

17 UCL e Lup * e Lup 516 327.40+3.92
−6.80 11.48+1.93

−2.35 6.89+0.65
−0.49 145+11

−13 120+13
−20 −76+6

−9 29+6
−7

18 UCL UPK606 HD 125777 131 320.00+2.17
−1.37 13.72+1.36

−1.68 5.92+0.27
−0.25 169+7

−7 125+7
−4 −106+9

−4 40+3
−4

19 UCL ρ Lup * rho Lup 246 315.12+6.44
−3.47 9.83+3.78

−3.09 8.16+0.55
−0.57 123+9

−8 87+7
−8 −82+9

−13 21+7
−6

20 UCL ν Cen * nu Cen 1737 318.50+9.60
−8.02 17.45+4.13

−4.08 7.21+0.67
−0.69 139+15

−12 99+22
−19 −87+18

−12 41+12
−9

21 LCC σ Cen * sig Cen 1805 301.56+5.56
−5.32 8.35+4.99

−4.74 8.71+0.87
−1.05 115+16

−10 60+12
−11 −96+10

−13 17+11
−10

22 LCC Acrux * zet Crux 394 300.27+3.20
−1.71 −1.98+2.05

−3.53 9.41+0.47
−0.37 106+4

−5 54+5
−3 −91+7

−4 −4+4
−6

23 LCC Musca-foreground HD 107947 95 300.64+1.69
−2.18 −10.27+1.81

−1.92 9.79+0.30
−0.40 102+4

−3 52+3
−4 −86+3

−4 −18+3
−4

24 LCC ε Cham * DX Cha 39 300.34+0.71
−0.27 −15.97+0.68

−0.76 9.81+0.18
−0.26 102+3

−2 50+1
−1 −85+3

−3 −28+1
−2

25 LCC η Cham * eta Cha 30 292.49+1.56
−0.48 −21.60+2.30

−0.32 10.14+0.40
−0.13 99+1

−4 35+2
−1 −85+2

−1 −36+5
−1

26 Pipe B59 Em* AS 218 32 357.10+0.38
−0.30 7.11+0.59

−0.63 6.23+0.12
−0.16 160+4

−3 159+4
−3 −8+1

−1 20+2
−2

27 Pipe Pipe-North HD 155427 42 4.92+1.29
−1.15 12.85+2.53

−1.98 7.69+0.69
−0.30 130+5

−11 126+6
−12 11+3

−3 29+6
−5

28 Pipe θ Oph HD 158704 98 359.71+1.09
−2.75 7.05+2.66

−1.95 6.79+0.29
−0.20 147+5

−6 146+4
−6 −1+3

−7 19+5
−6

29 CrA CrA-Main HD 177076 96 359.87+0.38
−0.66 −17.65+0.70

−0.32 6.46+0.13
−0.13 155+3

−3 147+3
−3 0+1

−2 −47+2
−1

30 CrA CrA-North HD 172910 351 359.02+1.17
−1.77 −13.97+2.74

−1.91 6.70+0.25
−0.29 149+7

−5 145+7
−5 −2+3

−5 −36+8
−5

31 CrA Scorpio-Sting HD 157864 132 350.59+5.27
−3.11 −3.04+4.72

−3.77 7.49+0.66
−0.52 134+10

−11 131+9
−11 −22+12

−6 −7+11
−9

32 Cham Centaurus-Far HD 121808 99 310.69+2.02
−3.30 −1.18+2.14

−2.74 5.25+0.35
−0.31 190+12

−12 122+15
−12 −142+6

−15 −4+7
−9

33 Cham Chamaeleon-1 V* CR Cha 192 297.22+0.21
−0.52 −15.52+0.90

−0.37 5.25+0.18
−0.10 191+4

−6 84+2
−3 −164+6

−4 −50+2
−2

34 Cham Chamaeleon-2 V* BF Cha 54 303.69+0.23
−0.37 −14.72+0.74

−0.38 5.08+0.13
−0.16 197+6

−5 105+4
−3 −159+4

−5 −50+3
−4

35 NE L134/L183 HD 141569 24 358.40+5.78
−3.05 36.84+0.79

−2.22 8.76+0.24
−0.32 114+4

−3 93+4
−4 −3+9

−5 67+4
−1

36 NE Oph-Southeast HD 154922 61 4.54+1.49
−1.01 13.06+0.68

−0.63 4.80+0.19
−0.24 208+11

−8 202+11
−8 16+6

−4 48+3
−4

37 NE Oph-NorthFar BD-06 4472 28 9.60+2.56
−1.57 24.98+1.32

−1.33 5.06+0.24
−0.37 198+15

−9 176+16
−8 29+11

−5 85+2
−6

Notes. The median cluster positions are listed (see Table 4 for the median velocities). In Cols. 6–12, we list the medians of the positional parameters
for each cluster including all cluster members (without considering any stability cut). The given lower and upper uncertainties represent the 1σ
scatter around the median. In this scatter, the original measurement uncertainties of single stellar sources are not considered. (a)Column 4 lists the
brightest star that was selected as a member by SigMA. The star annotation “*” is used as in the SIMBAD astronomical database (Wenger et al.
2000) and helps distinguish stellar names from cluster names throughout the manuscript since some clusters are named after bright stars. Further
bright stellar member candidates, which were observed by Hipparcos (partially not in Gaia DR3), are listed in Table 5.

and 4 stellar members (e.g., Damiani et al. 2019; Kerr et al.
2021), which are merged in our SigMA selection. The average
distance to Lupus 1–4 matches well with cloud distance esti-
mates from Zucker et al. (2021, derived from Leike et al. 2020),
who report a distance between 155–198 pc, or an average of

about 165 pc for the Lupus 1–4 clouds. Similar distances have
been reported in Teixeira et al. (2020) or Galli et al. (2020a).

At the heart of UCL lie the clusters ηLup, φLup, and e Lup,
which likely belong to the oldest parts of Sco-Cen, probably the
clusters where the first supernovae in Sco-Cen originated from
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Fig. 14. Gaia CMD using MG versus GBP − GRP showing the SigMA-selected Sco-Cen members. Left: SigMA cluster members that pass the
photometric quality criteria as given in Eq. (D.2). Middle: Potential contamination from older sources (orange), selected with a 25 Myr isochrone
from PARSEC (black line) and Baraffe et al. (2015, dashed black line) and an additional cut at MG > 3 mag (dashed-dotted black line), which
excludes the UMS. The combined conditions indicate contamination from older sources of about 6–7% when using the given photometric quality
criteria and no stability cut. Right: Substellar candidates (red dots) selected with a 0.08 M� isomass line from Baraffe et al. (2015, dark red line)
using only the younger source from the middle panel. This cut indicates that roughly 19% of substellar sources are within the SigMA Sco-Cen
members when the mentioned cuts and photometric quality criteria are applied and extinction effects are ignored. More details on the quality
criteria, the selection borders, and the isochrone models are given in Appendix D.

(Zucker et al. 2022). To the north of the traditional UCL bor-
ders, we find a clustering, which has not been isolated in previ-
ous works, named Libra-South, based on its location within that
constellation.

There is one cluster slightly in front and to the south of the
main UCL body, called Norma-North, named after its location in
that constellation. This is a new clustering, which does not have
a clear counterpart in the literature. Another SigMA cluster lies
to the far side of UCL and the Galactic west of the Lupus con-
stellation. This cluster correlates with UPK 606 when compared
to Cantat-Gaudin & Anders (2020; see also Kerr et al. 2021 and
Table E.3). Finally, to the Galactic west, UCL connects with
LCC via the clusters νCen and ρLup.

5.1.3. Lower Centaurus Crux (LCC)

We find five SigMA clusters (2363 stellar sources) toward the
LCC region (see Table 3), which is now reaching farther below
the Galactic plane compared to earlier definitions in the liter-
ature. For the SigMA extraction, the young local associations
ε Cham and ηCham are part of LCC, located at the Southern
most tip, confirming the results of Mamajek et al. (1999, 2000)
or Fernández et al. (2008). Consequently, the main body of LCC
is composed of five subgroups, which seem to constitute an
age gradient (e.g., Kerr et al. 2021) from north to south (σCen,
Acrux, Musca-foreground, ε Cham, and ηCham), which we ana-
lyze in a follow-up study (Ratzenböck et al. 2023).

5.1.4. Pipe Nebula

Although not traditionally considered part of the Sco-Cen asso-
ciation, we find three SigMA clusters toward the Pipe nebula
(172 stellar sources), including B59, Pipe-North, and θOph.

The group B59 seems to be closely related to the star form-
ing B59 cloud (e.g., Lombardi et al. 2006; Brooke et al. 2007;
Román-Zúñiga et al. 2007, 2010). This is supported not only by
projection in the sky toward cluster and cloud but also by the
cloud distance between 147–163 pc (Zucker et al. 2021), com-
patible with the cluster distance of about 160 pc. The θOph clus-
ter, surrounding the B2 star * tet Oph, is located at about the same
distance to B59 and is close to the stem of the Pipe Nebula cloud,
giving ground to studies of a possible interaction between the B2
star and the cloud (Gritschneder & Lin 2012). Pipe-North lies
slightly in front of the other two clusters (at about 130 pc) and to
the Galactic north of the Pipe Nebula, as the name suggests.

5.1.5. Corona Australis (CrA)

The possible physical connection between CrA and the Sco-
Cen association was already pointed out in previous stud-
ies (e.g., Mamajek & Feigelson 2001; Preibisch & Mamajek
2008; Kerr et al. 2021) and confirmed by our work. We count
three SigMA clusters to the CrA region, containing a total of
579 sources. We identify a distinct cluster projected on top of
the CrA molecular cloud and the embedded Coronet clusters,
which we call the CrA-Main group. The cluster distance fits the
cloud distance of about 136–179 pc (Zucker et al. 2021). To the
Galactic North, we identify a second and more extended group,
called CrA-North, which was already discussed in Galli et al.
(2020b) or Esplin & Luhman (2022). Additionally, we identify
a third group to the Galactic northwest of the two other clus-
ters, apparently building a bridge to the main body of Sco-
Cen. This group we name Scorpio-Sting since its projected
location matches the sting of the Scorpio constellation. Sco-
Sting has only one clear counterpart in the literature, namely
the TLC22/EOM7 group in Kerr et al. (2021; see Sect. 5.2.2 and
Table E.3), while they identify a smaller subsample of this group
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Table 4. Median velocity parameters for the 37 SigMA clusters in Sco-Cen.

SigMA Group name Nr. µ∗α µδ vα vδ vα,LSR vδ,LSR
(short version) (mas yr−1) (km s−1) (km s−1)

1 (US) ρ Oph 535 −6.81+1.36
−1.56 −25.91+1.78

−1.58 −4.50+0.89
−1.01 −16.95+0.91

−1.28 1.36+0.84
−0.94 −4.20+1.01

−1.15
2 ν Sco 150 −8.47+0.74

−0.81 −24.50+0.76
−0.98 −5.62+0.55

−0.56 −16.22+0.61
−0.73 1.21+0.37

−0.43 −4.52+0.58
−0.60

3 δ Sco 691 −12.24+2.04
−2.54 −23.92+1.27

−1.35 −8.22+1.40
−1.99 −16.27+0.88

−0.75 −0.77+0.88
−1.09 −3.88+0.57

−0.66
4 β Sco 285 −9.39+1.37

−1.07 −21.69+1.00
−1.73 −6.87+0.86

−0.77 −15.86+0.77
−1.50 0.26+0.56

−0.59 −4.13+0.58
−0.96

5 σ Sco 544 −10.68+1.47
−1.37 −21.79+1.34

−1.87 −8.12+1.09
−0.87 −16.49+0.92

−1.23 −1.68+0.78
−0.61 −3.48+0.91

−1.31
6 Antares 502 −11.00+1.59

−1.25 −23.31+2.15
−2.00 −7.24+0.87

−0.69 −15.52+1.29
−0.72 −1.29+0.84

−0.74 −2.43+0.86
−1.17

7 ρ Sco 240 −15.98+1.96
−2.08 −24.14+1.65

−1.72 −10.44+1.22
−1.18 −15.82+0.74

−0.85 −3.64+0.52
−0.59 −2.78+0.62

−0.78
8 Sco-Body 373 −8.04+2.92

−1.91 −26.82+3.67
−3.55 −5.30+2.16

−1.70 −17.64+1.06
−1.08 −1.38+0.69

−0.39 −2.83+0.52
−0.67

9 US-fg 276 −19.97+2.74
−2.86 −31.25+4.09

−3.02 −10.63+1.33
−0.96 −16.28+1.20

−1.07 −3.33+1.16
−0.73 −3.86+0.88

−0.77

10 (UCL) V1062-Sco 1029 −12.14+0.96
−2.02 −21.15+0.93

−0.82 −10.18+0.75
−1.43 −17.73+0.75

−0.61 −5.12+0.41
−0.52 −2.15+0.66

−0.55
11 µ Sco 54 −11.75+0.42

−0.83 −22.61+0.55
−0.37 −9.22+0.54

−0.53 −17.61+0.49
−0.44 −5.28+0.30

−0.25 −2.11+0.41
−0.31

12 Libra-S 71 −14.87+1.55
−1.76 −20.92+1.22

−1.03 −11.15+1.11
−0.86 −15.44+0.45

−0.71 −1.00+0.53
−0.62 −3.71+0.43

−0.42
13 Lup 1-4 226 −10.54+1.51

−1.67 −23.39+1.01
−1.02 −8.07+1.18

−1.41 −17.77+0.95
−0.74 −0.76+0.79

−1.07 −2.85+0.75
−0.92

14 η Lup 769 −17.63+2.28
−2.01 −27.84+2.12

−3.93 −11.21+1.70
−1.34 −17.83+0.95

−0.83 −4.15+0.79
−0.85 −3.18+0.83

−0.65
15 φ Lup 1114 −20.99+2.67

−4.71 −25.60+3.00
−4.16 −13.31+1.48

−1.24 −15.82+0.90
−1.38 −3.37+1.05

−1.00 −2.45+0.85
−1.03

16 Norma-N 42 −27.93+2.68
−2.41 −42.80+2.50

−4.59 −14.07+1.61
−1.03 −21.39+1.22

−1.69 −5.73+0.82
−0.83 −6.05+0.73

−1.40
17 e Lup 516 −20.80+2.73

−4.62 −21.67+1.78
−1.60 −14.44+1.17

−1.46 −15.07+1.42
−0.67 −3.81+0.54

−0.50 −1.05+0.79
−0.60

18 UPK606 131 −20.07+1.27
−0.73 −17.01+0.71

−1.17 −15.96+0.87
−0.49 −13.69+0.44

−0.60 −3.20+0.44
−0.33 −1.14+0.47

−0.31
19 ρ Lup 246 −26.22+2.43

−2.95 −23.13+3.50
−2.37 −15.51+1.52

−1.06 −13.14+1.35
−1.36 −1.95+0.45

−0.73 −1.18+0.41
−0.40

20 ν Cen 1737 −23.33+5.86
−4.69 −20.27+2.26

−2.61 −15.28+2.99
−1.84 −13.53+1.99

−1.64 −1.78+0.79
−0.73 −1.71+0.61

−0.82

21 (LCC) σ Cen 1805 −33.23+4.14
−3.71 −13.67+3.91

−5.10 −18.27+1.02
−0.69 −7.70+2.33

−2.30 −2.20+0.50
−0.67 −0.41+0.77

−0.63
22 Acrux 394 −37.73+1.83

−1.67 −11.36+2.84
−4.43 −19.10+0.68

−0.40 −5.69+1.32
−2.00 −2.75+0.32

−0.37 −0.17+0.45
−0.35

23 Musca-fg 95 −39.37+1.82
−1.57 −9.33+4.36

−3.95 −19.20+0.61
−0.33 −4.49+2.05

−2.02 −2.85+0.31
−0.22 −0.23+0.44

−0.40
24 ε Cham 39 −41.23+2.27

−0.87 −6.05+2.04
−2.99 −19.85+0.73

−0.42 −2.92+1.01
−1.44 −3.31+0.50

−0.51 −0.54+0.49
−0.46

25 η Cham 30 −30.16+1.93
−4.40 26.86+1.24

−5.90 −14.06+0.69
−2.04 12.55+0.67

−3.18 −2.58+0.47
−0.25 2.09+0.59

−0.51

26 (Pipe) B59 32 −0.49+0.70
−1.16 −18.84+0.41

−0.60 −0.37+0.53
−0.89 −14.48+0.71

−0.76 2.13+0.70
−0.63 −0.61+0.68

−0.83
27 Pipe-N 42 −4.78+1.51

−2.56 −23.36+0.62
−1.65 −3.08+1.04

−1.30 −14.55+0.79
−0.36 −0.27+0.44

−0.65 −2.79+0.38
−0.28

28 θ Oph 98 −4.71+0.45
−0.94 −21.85+0.67

−2.08 −3.29+0.39
−0.73 −15.41+0.35

−0.93 −1.16+0.38
−0.40 −2.03+0.45

−0.70

29 (CrA) CrA-Main 96 4.57+1.19
−0.70 −27.11+0.88

−1.33 3.33+0.98
−0.47 −19.83+0.63

−1.21 −1.76+0.83
−0.49 −4.77+0.67

−1.04
30 CrA-North 351 0.92+1.84

−2.34 −27.60+1.17
−1.00 0.65+1.32

−1.59 −19.51+0.68
−0.63 −3.16+0.59

−0.80 −4.25+0.54
−0.62

31 Sco-Sting 132 −10.03+2.98
−2.27 −29.75+1.78

−4.47 −6.12+1.33
−1.49 −19.51+1.49

−0.82 −5.15+0.52
−0.43 −3.70+0.65

−0.44

32 (Cham) Cen-Far 99 −18.40+1.87
−2.36 −11.75+2.75

−2.67 −16.64+1.24
−1.26 −10.51+2.22

−2.15 −2.79+1.28
−0.83 0.31+1.72

−1.50
33 Cham-1 192 −22.55+0.72

−0.91 0.38+1.21
−1.11 −20.31+0.64

−0.71 0.35+1.06
−1.01 −3.96+0.74

−0.70 −0.79+0.86
−0.79

34 Cham-2 54 −20.16+0.76
−0.94 −7.55+0.77

−0.64 −18.95+0.65
−0.73 −7.07+0.83

−0.53 −3.24+0.55
−0.57 −0.22+0.51

−0.64

35 (NE) L134/L183 24 −17.63+1.02
−0.97 −20.28+1.00

−1.52 −9.75+0.92
−0.62 −11.13+0.94

−0.92 −0.83+0.17
−0.36 −2.44+0.34

−0.17
36 Oph-SE 61 −5.65+0.61

−0.54 −11.44+0.66
−0.75 −5.63+0.54

−0.60 −11.58+1.26
−0.63 −2.77+0.51

−0.46 0.30+1.04
−0.69

37 Oph-NF 28 −8.57+1.88
−1.46 −16.75+0.99

−1.59 −7.78+0.96
−1.11 −15.89+0.41

−0.96 −2.83+0.44
−0.85 −7.11+0.52

−0.79

Notes. In Cols. 4–9, we list the medians of the velocity parameters for each cluster including all cluster members (without considering any
stability cut). The given lower and upper uncertainties represent the 1σ scatter (velocity dispersion) around the median. In this scatter, the original
measurement uncertainties are not considered. See Table 3 for the positional parameters.

(12 members in Kerr et al. 2021 versus 132 members in this
work).

5.1.6. Chamaeleon (Cham)

The well-known star-forming molecular clouds of Chamaeleon
are seen through the same line-of-sight as the southern tip of
LCC but lie clearly toward the back of LCC when seen in

3D (Fig. 12). We identify two clusters likely associated with
the clouds with a total of 246 stellar sources in Chamaeleon
1 & 2, which have already been characterized with Gaia (e.g.,
Roccatagliata et al. 2018; Galli et al. 2021b; Kerr et al. 2021, see
also Sect. 5.2.2).

In addition, toward the middle-eastern part of the traditional
LCC borders, SigMA extracts another cluster that seems unre-
lated to the main body of LCC, which we name Centaurus-Far
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(containing 99 sources), since it lies about 60 pc to the back
of it, at a distance similar to that of the Chamaeleon clouds.
This cluster was already identified in Kerr et al. (2021), as part
of the TLC21 group (Cham-group) as EOM3, and named Cen-
South (see Sect. 5.2.2 and Table E.3). Consistent with Kerr et al.
(2021), we count this cluster to the Cham subregion.

Due to their youth, position, and tangential velocities,
we assume that the three Cham clusters and the two clouds
are part of the Sco-Cen star formation event, but this must
be confirmed by tracebacks of the young populations (see,
e.g., Großschedl et al. 2021). Similar suggestions appear in
Lépine & Sartori (2003) or Sartori et al. (2003).

5.1.7. Northeast clusters (NE)

We identify three extra clusters to the Galactic north and
east of Sco-Cen, which we discuss separately in this section:
L134/L183, Oph-southeast, and Oph-North-Far. We assigned
these clusters to a separate region, which we call the North-
east clusters (NE), based on their location relative to Sco-Cen
in Galactic coordinates, since they do not fit any other of the
Sco-Cen subregions.

The cluster L134/L183 is a small, newly identified stellar
group to the Galactic north of US (with 24 stellar members).
This stellar group is likely associated with the small molecu-
lar clouds L134 and L183 (or MBM 36 and 37, Magnani et al.
1985), which are currently non-star-forming (Pagani et al. 2003,
2004, 2005). The distances to the clouds in Zucker et al. (2019)
are about 105–120 pc, which matches the cluster distance of
about 114 pc. The presence of the young stellar group close
by the clouds suggests that (1) the clouds are remnants of a
larger cloud that formed the newly identified SigMA cluster and
(2) that the newly identified sources might be playing a role
in the observed “cloud-shine” phenomenon toward this cloud
(Steinacker et al. 2010, 2015).

The cluster Ophiuchus Southeast (Oph-SE, 61 members) lies
at a similar projected position as Pipe-North, while being at a far-
ther distance, about 50 pc in the back (hence, we did not count
it to the Pipe region). This stellar group was already selected
by Kerr et al. (2021) as TLC 4 with 31 members (Sect. 5.2.2).
Finally, the group Ophiuchus-North-Far (Oph-NF, 28 members)
appears to be a newly identified stellar group, located at a sim-
ilar distance as Oph-SE. This new group needs more investiga-
tions in the future, since the stability of the selected members,
as determined by the SigMA algorithm, is generally very low
(stability< 11%).

5.2. Comparison with previous work

In the following we compare the SigMA-selected stellar clus-
ters with recent results from the literature (Table 6), includ-
ing eight publications. The studies by Damiani et al. (2019),
Schmitt et al. (2022), Luhman (2022), and Žerjal et al. (2023)
discuss the whole Sco-Cen region, slightly extending beyond
the traditional Sco-Cen borders while excluding the regions
to the Galactic South (CrA and Cham). The first three of
these studies select members within broad selection borders
decided by hand, which we call in this paper visual selection
methods. Squicciarini et al. (2021), Miret-Roig et al. (2022a),
and Briceño-Morales & Chanamé (2023) focus only on the US
region and extract clusters using a combination of Gaia astrom-
etry and radial velocities. Kerr et al. (2021) present an all-sky
study of young stars within 333 pc, hence covering the new
extended view of the Sco-Cen association, using an unsuper-

vised machine learning approach, which is more similar to our
work than the aforementioned studies.

The literature samples are cross-matched with the SigMA
clusters using the Gaia DR3 source_id, as specified in
Appendix A. We provide: an overview of the discussed literature
samples in Table 6, giving the total number of sources of each
literature sample; the total number of sources of SigMA Sco-Cen
cluster members within the respective studied areas, the field of
view (FOV); and the number of total matches. Finally, we list
the fraction of sources that we recover or reject (or miss) when
compared to the individual literature samples, and the fraction of
new sources when comparing the matches to the SigMA sample.

5.2.1. Comparison with Damiani et al. (2019)

Damiani et al. (2019, hereafter DPP19) analyze Sco-Cen using
Gaia DR2 data and a traditional approach, selecting by hand
over-densities in velocity and position space, followed by select-
ing pre–main-sequence (PMS) stars from an HRD. Their FOV
goes slightly beyond the traditional borders of the associa-
tion (see Table 6). They discuss eight compact clusters, which
are prominently peaked in projection and in velocity space
(hence, easier to identify with visual selection methods); these
are UCL-1, UCL-2, UCL-3, Lupus 3, LCC-1, US-far, US-near,
and the well-studied IC 2602. Although SigMA easily detects
IC 2602, we do not discuss this cluster since its age (∼30 Myr)
excludes it as a part of the recent Sco-Cen star formation event,
as mentioned above, and it also has distinctly different tangential
velocities compared to the bulk motion of Sco-Cen (see Fig. 6 in
DPP19). DPP19 also discuss four diffuse populations (D1, D2a,
D2b, US-D2), which are generally distributed across large parts
of the traditional Blaauw Sco-Cen OB association. Moreover,
their catalog includes sources, which have not been assigned to
any group (labeled with “N” in Table E.2).

The DPP19 catalog contains in total 14 437 sources, of which
1734 are in their seven clustered Sco-Cen populations (350 in
IC 2602), 8727 are in their four diffuse populations, and the rest
3626 have not been assigned to any population (labeled with
“N”). When cross-matching the DPP19 Gaia DR2 sample with
DR3 astrometry, we find that 201 stars (1.4%) are rejected when
applying the distance criteria from DPP19 (d < 200 pc), due
to updated parallaxes in DR3. The majority of these sources
have not been assigned to any group or belong to one of the
diffuse populations. When now considering only the sources in
the clustered and diffuse populations within 200 pc (and without
IC2602), then there are 10,425 potential Sco-Cen members in
DPP19, or 10,421 when additionally applying the box and qual-
ity criteria from Sect. 2.

There are in total 9635 cross-matches between the SigMA
clusters and DPP19, while 9328 of these (89.5% out of 10,421)
belong to either the clustered or diffuse populations (307 are
not assigned, “N”). Of the 9328 cross-matches, 7609 belong to
one of the four diffuse populations. Comparing this number to
their total diffuse population (8689 within 200 pc), we find that
about 88% are a match with SigMA clusters. The fact that the
majority of sources from so-called diffuse populations are now
in clustered populations (at least in the statistical sense) is inter-
esting and calls for future investigations to better understand if
physically meaningful “young diffuse stellar populations” actu-
ally exist within young stellar associations like Sco-Cen. In most
cases, more than one DPP19 group (both clustered or diffuse) fits
one of our clusters, and vice versa (see Table E.2). In particular,
their diffuse groups each contain subparts of about 10–20 of the
SigMA clusters.
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Focusing on the 1732 DPP19 sources in compact clusters,
there are 1719 matches with SigMA clusters (99%) within 200 pc.
The better consensus considering their compact samples high-
lights the higher robustness of these samples (see also Table 6).
For individual samples toward Upper-Sco, we find that their
US-near and US-far cannot be assigned clearly to only one of
the SigMA clusters (see Table E.2). US-near correlates best with
ρOph/L1688 (containing fractions of δSco, ν Sco, Antares, and
βSco), and US-far with σSco (containing fractions of Antares,
βSco, δSco, and ρSco). In particular, Antares is distributed
almost equally among these two clusters. The Antares group is
partially occupying the same volume as ρSco and in particular
ρOph/L1688 (see Sect. 5.1.1 and Grasser et al. 2021). This high-
lights the capability of SigMA to untangle young populations that
share the same volume but have different space motions. The rest
of the DPP19 compact clusters correlate best with SigMA clus-
ters as follows: UCL-1 with V1062 Sco and µSco, UCL-2 with
UPK 606, UCL-3 with φLup, LCC-1 with Acrux, and Lup III
with Lupus 1–4. Finally, about 9% of the SigMA cluster mem-
bers correlate with unassigned sources in DPP19 (N), within
their FOV and our box criteria.

Concerning the different approaches, comparing the DPP19
visual selection method and the SigMA unsupervised clustering
method, we first note that the method used by DPP19 starts with
a selection of stars by-hand in velocity space, followed by a
selection by-hand of PMS stars on the HRD. Such an approach
will deliver the most prominent clusters. However, somewhat
less dense clusters cannot be identified easily when compared
to unsupervised machine learning tools, such as SigMA, and their
method is less sensitive to possible spatial and kinematical struc-
ture in the Sco-Cen population. For example, a look at Figs. 2, 3,
and 4 in DPP19 will make clear that the total number of member
candidates using this approach is a strong function of the size
of the selection-shapes used in tangential velocity space and the
HRD. These selection borders will select a larger number of can-
didates than a fine-tuned machine learning classifier with also a
likely higher number of contaminants.

When focusing on a comparison of the total number of
Sco-Cen members in DPP19 stellar clusters (compact and dif-
fuse within 200 pc, 10,421 sources) to the number of matched
SigMA cluster members (9328 within 200 pc; see Table 6), we
find that there are 1093 sources only in DPP19, implying that we
could be missing about 10% of possible members if all 10,421
sources were good members. We did not perform a detailed com-
parison but find that the 1093 sources also contain sources that
seem to be older than the SigMA clusters when investigated in a
CMD (as in Fig. 14); hence, the difference based on this com-
parison is likely lower than 10% (see also the comparison with
Luhman 2022). As mentioned above, we expect SigMA to be
missing possible candidates when compared with a method that
selects broad regions in various 2D planes of the phase space, but
also expect the SigMA sample to be less contaminated. Neverthe-
less, the SigMA sample contains in total 11,796 sources inside
the DPP19 FOV, implying that, in the end, we find about 20%
more clustered Sco-Cen members. This could partially be caused
by the different data sets, DR2 versus DR3, while the differ-
ent methodologies likely cause more severe disagreements. A
deeper analysis is needed, although not warranted in this paper.

5.2.2. Comparison with Kerr et al. (2021)

Recently, Kerr et al. (2021, hereafter KRK21) presented a
study of nearby young stellar populations within 333 pc from
the Sun. They use the HDBSCAN clustering algorithm (see
Appendix B.1) on Gaia DR2 parallaxes and proper motions on
a preselected sample of PMS stars with ages .50 Myr. They

identify 27 top-level clusters (TLCs), including Chameleon as
TLC 21 and the Sco-Cen association as TLC 22. The latter was
further broken down into another 27 subgroups based on the
excess of mass (EOM) method, selecting the most persistent
clusters in the clustering tree. Three of these EOM subgroups
(EOM 12 Lupus; EOM 17 US; and EOM 27 LCC) were further
broken down into leaves, which are nodes of the clustering tree.

TLC 22 covers the main Sco-Cen association, and TLC 21
the Chamaeleon region. Additionally, there were cross-matches
with members of the group TLC 4, which is called Ophiuchus
Southeast in KRK21. These three TLC groups combined show a
similar extent to our Sco-Cen extraction. SigMA finds in total a
slightly lower number of groups toward Sco-Cen (37 in this work
versus 45 in KRK21), while the TLC 22 subgroups in KRK21
also include older or unrelated populations (e.g., βPic, IC 2602,
Platais 8, and EOM-2 & 5), which are not included in our final
Sco-Cen sample, as outlined above. Consequently, only 39 of
the KRK21 groups toward Sco-Cen fall within the 37 selected
SigMA clusters from this work.

In Table E.3, we show an overview of the matches of SigMA
groups with corresponding KRK21 groups. Overall, the SigMA
Sco-Cen groups are more richly populated compared to the
KRK21 groups. In most cases, there is at least some overlap
between our groups and the TLC 22 main Sco-Cen group (and
with TLC 21, Cham; or TLC 4, Oph-SE), while some of our
groups also distinctly correspond to EOM subgroups (or leaves).
For about 40% of the SigMA groups, clear accordance with a sin-
gle EOM group (or leaves group) is not possible due to overlaps
with more than one SigMA group or due to no or only insignifi-
cant overlap (see also Table E.3).

Some differences between the SigMA and KRK21 clustering
results might arise from the different data input since we used Gaia
DR3 and KRK21 used DR2, while this would only create minor
deviations. Although both HDBSCAN and SigMA approximate
the hierarchical cluster tree, we expect discrepancies in clustering
results. The primary reason for this difference is the cluster tree
pruning strategy discussed in Appendix B.1. The EOM heuristic
prioritizes large clusters over their children when they maintain a
long lifetime in the density hierarchy. The resulting children fail to
exceed the parent’s EOM. Conversely, our pruning strategy does
not depend on cluster lifetimes but only cares about substantial
density valleys between neighboring density peaks.

The additional leaf separations in KRK21 were applied to
the Lupus, US, and LCC regions (in TLC 22, EOM-12,17,27)
since they found that there are substructures that have not been
identified by the EOM method. Some leaf clusters match quite
well with SigMA clusters; in contrast, the SigMA clusters are sig-
nificantly richer and mostly more extended, and in some cases,
they are differently separated (see details in Table E.3). Com-
pared to the EOM heuristic or SigMA’s multi-modality consid-
erations, leaf clusters do not come with statistical guarantees.
The clustering result is highly susceptible to random density
fluctuations since leaf nodes are extracted only considering the
minimum cluster size criterion (Stuetzle & Nugent 2010); see
Appendix B.1 for more details. Without any additional prun-
ing strategy, which deals with spurious clusters, leaf clustering
results need to be taken with a grain of salt. Nevertheless, some
of the leaves in US (ρOph/L1688, ν Sco, δSco, βSco) show
good agreement with the SigMA US cluster separations, indicat-
ing the robustness of these clusters (see also Sect. 5.2.7).

When comparing all members in the TLC22 group (7394),
which contains the main Sco-Cen association, with our SigMA
extraction (12 669 members without Cham, Oph-NE, and
Oph-SE) we find 6270 cross-matches in total (Table 6). Hence,
1124 (∼15% of TLC22) sources are only in TLC22, and 6399 are
only in SigMA (∼50% of SigMA). We find that the KRK21 TLC22
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sample contains at least 256 sources from older stellar groups,
which gets apparent from their Table 6 (EOM 1–5, including
βPic, IC 2602, and Platais 8), and 456 sources of TLC22 match
with sources that are in older SigMA clusters. Combined, this
leaves 6895 potentially younger TLC22 Sco-Cen members, and
hence 625 possible extra sources (∼8% of TLC22). For these
extra sources, a clear separation of the younger Sco-Cen stellar
groups as discussed in this work, and the somewhat older groups
is not straightforward, since about 50% of the sources in the
TLC22 group have not been assigned to a separate subcluster
(EOM or leaf). The somewhat older sources can also be estimated
when investigating the CMD or the velocity space. In the CMD
no clear separation of older or younger sources can be identified.
In tangential velocity space, there are sources that have slightly
deviating motions from expected Sco-Cen motions or which
coincide with velocity spaces of the KRK21 older EOM groups
or older SigMA groups. Taking all this into account, the fraction
of young TLC22-only sources is likely below 8%.

The reason for these extra potential Sco-Cen members in the
KRK21 TLC22 group is similar to the mentioned reasons above
(e.g., in Sect. 5.2.1). The TLC22 group represents a cluster root,
enveloping the whole Sco-Cen region and somewhat beyond, and
no additional substructure was extracted (yet). In the following
step KRK21 use the EOM and leaf methods to identify individual
clusters, while in this step they lose almost 50% of the original
TLC22 group, as mentioned above. Focusing only on the TLC22
members that are in one of the 22 younger EOM subgroups, we
find that we recover 99.8% of these sources as Sco-Cen members.
Finally, the TLC22 group seems to be overall more incomplete
compared to the SigMA Sco-Cen extraction, since we find in total
more members (∼42%, 12 669 versus 7394), and also somewhat
different substructure. At the same time, the subclusters them-
selves are significantly richer compared to KRK21.

In conclusion, the comparison with KRK21 highlights the dif-
ferences that can arise with different unsupervised machine learn-
ing tools. Compared to applications of HDBSCAN, we find that
SigMA is able to extract similar substructure, however, with only
one clustering step (no sub-steps like EOM or leaves are needed),
while at the same time extracting significantly higher numbers
of members per cluster. The modeling results in Sect. 4.2.2,
where we compare the performance of DBSCAN, HDBSCAN,
and SigMA, also suggest that SigMA outperforms HDBSCAN.
However, a comparison of the KRK21 HDBSCAN results with
the model HDBSCAN results cannot be done at face value. In
Table 2 we list the performance results for the best-performing
HDBSCAN model configuration, where the model parameters
were optimized in a grid search, as described in Appendix B.8.
The HDBSCAN configuration used by KRK21 is not identical to
these model runs; hence, we cannot directly use the performance
numbers in Table 2 for a comparison of the two Sco-Cen clus-
ter catalogs (SigMA versus KRK21). Moreover, we did not com-
bine multiple results (KRK21 combines results from EOM and
leaf runs) to maximize the performance. Regardless of the diffi-
culties to compare the performances, there is sufficient evidence
to conclude that both the direct comparison of the two Sco-Cen
cluster catalogs and also the modeling runs indicate that SigMA
outperforms HDBSCAN in Sco-Cen-like environments.

5.2.3. Comparison with Schmitt et al. (2022)

Recently, Schmitt et al. (2022, hereafter SCF22) used eROSITA20

(Merloni et al. 2020) to search for low-mass Sco-Cen members by
cross-correlating the eRASS1 source catalog with the Gaia EDR3

20 Extended ROentgen Survey with an Imaging Telescope Array. A wide-
field X-ray telescope on board the Russian-German Spectrum-Roentgen-
Gamma (SRG) observatory.

catalog. They discuss 6190 X-ray observed sources within the
traditional borders (Blaauw 1964a; de Zeeuw et al. 1999), which
are Sco-Cen candidate members. They include sources within a
distance range of 60 to 200 pc (Table 6), restricted to low-mass
stars (GBP − GRP > 1, following Pecaut & Mamajek 2013). The
6190 sources include 40 double Gaia sources that match with two
different eROSITA sources. We only discuss the 6150 single Gaia
sources.

Since X-ray emitting sources are expected to be young (e.g.,
Schmitt 1997; Neuhäuser 1997; Feigelson & Montmerle 1999;
Bouvier et al. 2014), the sources detected by eROSITA in the
direction of Sco-Cen, as discussed in SCF22, are potential mem-
bers of Sco-Cen. They found X-ray sources down to about
0.1 M�, and, unexpectedly, they also found the existence of
a population of young X-ray emitting stars that appear to be
more diffuse in velocity space21, calling into question search
approaches relying on kinematic selections.

We cross-matched the 6150 SCF22 X-ray-selected sources
with the SigMA selection in the same FOV (containing 11 348
SigMA sources; see Table 6). We find a total of 3385 cross-
matches, while none of these belong to their velocity-diffuse
population. This is expected since SigMA only selects clusters
confined in position-velocity space, which naturally excludes
any such velocity-diffuse sources. SCF22 claim that the dif-
fuse population is largely composed of young stars, only some-
what older compared to the kinematically confined Sco-Cen
members. We confirm the general youth of the sources by
inspecting the two populations in the CMD. However, we see a
relatively clear age separation between the velocity-clustered and
velocity-diffuse populations. X-ray sources that occupy similar
velocity spaces as the Sco-Cen members have ages between 0.1–
20 Myr, while X-ray sources that are velocity-diffuse have ages
between 10–1000 Myr, with the majority at about 30–100 Myr,
when compared to PARSEC model isochrones. While these are
technically young stars, they seem too old to be related to the Sco-
Cen association.

The origin of this co-spatial but velocity diffuse population
remains mysterious. Since these sources are older than Sco-Cen,
they are unlikely to result from stellar interactions in Sco-Cen
(an a priori unlikely process given the low stellar density of Sco-
Cen). The diffuse population, or the coeval part, could be related
to a relatively old star-formation episode, sharing today the vol-
ume space of Sco-Cen, a plausible scenario in the Milky Way
(Fürnkranz et al. 2019). We posit here that the SCF22 velocity-
diffuse young sources are unlikely to be part of Sco-Cen, but
represent a mystery that needs to be solved. As SCF22 points
out, the sensitivity of eROSITA will allow virtually all young
Sco-Cen low-mass members to be detected in the near future. A
combination of eROSITA future releases and Gaia data in Sco-
Cen will be crucial to increase statistics and better understand the
relation between observed X-ray luminosity with distance, age,
stellar masses, and the origin of the velocity-diffuse population.

When concentrating on the velocity-coherent sample in
SCF22 (without IC 2602), we find that there are about 20% in the
whole SCF22 sample that could be additional Sco-Cen candidate
members. These are only in SCF22 and have similar velocities
as SigMA Sco-Cen members. When investigating these 20% in
the CMD to check possible contamination from older stars (sim-
ilar to Fig. 14), this fraction would reduce to about 10%. These
extra potential members might result from the broad selection
conditions in SCF22, based on all X-ray detected sources within
the Blaauw borders in a distance range of 60 to 200 pc (Table 6).
These broad conditions, which do not attempt to identify any

21 We applied the separation of kinematically clustered and diffuse pop-
ulations by hand in vα/vδ space, as indicated in Fig. 7 of SCF22.
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underlying clustered structure, will naturally pick up more can-
didate members, although more false positives too, as discussed
in Sects. 5.2.1 and 5.2.9, also because the X-ray detection is not
a guarantee to only pick up the youngest sources below 20 Myr.

The mean completeness rate of SigMA in an environment
with densely packed clusters as estimated in Sect. 4.2.2 (obtained
with mock data), is about 81%, which could explain the missed
10% to 20% of SCF22 sources. On the other hand, there is
no completeness estimate given in SCF22, while this sample
is likely also incomplete, in particular regarding X-ray faint
sources, since we find about 70% more sources in the same
FOV. This is an indication that the X-ray luminosity of all young
sources is not in general bright enough to be picked up by
eROSITA, while future data releases might increase the numbers
of observed X-ray Sco-Cen members.

5.2.4. Comparison with Luhman (2022)
Luhman (2022, hereafter L22A) recently investigated the
Sco-Cen region using Gaia EDR3 data to identify 10 509 kine-
matic candidate members (see Table 6). L22A includes selec-
tions for US, UCL/LCC, V1062 Sco, Ophiuchus, and Lupus (the
Southern parts of Sco-Cen are not discussed in L22A), and con-
centrates on established stellar groups in Sco-Cen to guide the
selection. The visual selection approach of L22A is not suit-
able to separate the underlying kinematical substructure of the
Sco-Cen population. For example, it is clear from Fig. 4 in
L22A (bottom panel) that the UCL/LCC group contains sev-
eral over-densities in l/b space, but these are not extracted or
identified. The L22A selection is based on global kinematic cri-
teria, extracting candidates exhibiting proper motions similar to
expected proper motions of known members.

Cross-matching the 10 509 L22A Sco-Cen candidate mem-
bers with the SigMA clusters gives a total of 9838 matches
(93.6%), 671 L22A only sources (6.4%), and 2377 SigMA only
sources within the L22A studied area (Table 6), where the SigMA
sample contains 12 215 sources in total. A more detailed com-
parison of the SigMA clusters with the L22A subgroups22, which
are generally larger scale groups, shows no clear correlation
between single groups. Virtually each SigMA cluster has several
matches with various L22A subgroups (and vice versa). When
investigating the 671 L22A only sources, we find that about 50%
of these sources do not show significant signs of being older than
20 Myr, and the majority of the sources do not show significant
deviating motions from SigMA Sco-Cen cluster velocities. These
extra L22A sources, or part of them, could be Sco-Cen mem-
bers, meaning we might be missing up to about 6% of the can-
didates in L22A. This is not surprising because methods based
on visual selection, using broad selection borders, will naturally
find more candidates, as also discussed in Sect. 5.2.1. Neverthe-
less, the SigMA samples contain in total more Sco-Cen member
candidates within the same FOV.

5.2.5. Comparison with Žerjal et al. (2023)
Žerjal et al. (2023, hereafter ZIC21) present another clustering
result for the Sco-Cen association using Chronostar, a cluster-
ing tool developed by Crundall et al. (2019). This is a Bayesian
tool to kinematically decompose stellar groups using the full 6D
kinematic data, also performing a kinematic age determination.
They identify eight distinct kinematic components containing in
total 9556 sources23. The 9556 stellar members are both within

22 Subgroups are given in Table 1 of L22A in columns “kin” and “pos.”
23 18 sources are outside of our box and quality criteria, leaving 9538
ZIC23 sources. Moreover, there are 25 sources that are outside of the
ZIC23 parallax range due to updates from DR2 to DR3.

dense and also diffuse stellar groups. They also include two
known clusters that we excluded from the final Sco-Cen sam-
ple, which are IC 2602 and Platais 8 (H and I in ZIC23). Without
these clusters, their sample contains 8185 stars, of which 7671
(94%) match with the SigMA groups.

The groups are C–US, E–US-multi24, D–UCL-V1062-
Sco, F–UCL-V1062-Sco, G–UCL-East, T–UCL-West, A–LCC-
North, and U–LCC-South. Hence, with their method, they are
splitting US, UCL, LCC, and also V1062 Sco, each into two
parts. We list all matches of SigMA clusters with ZIC23 in
Table E.2. Generally, it can be seen that there is significant mix-
ing of various groups in both the ZIC23 and the SigMA groups.
In particular, the ZIC23 groups encompass larger areas, often
containing several or up to 20 of the SigMA groups. Concerning
the groups D and F, we find that both match with V1062-Sco and
µSco, while D has a slightly higher correlation with V1062-Sco
and F with µSco.

Within their FOV also other groups exist (see Fig. 8 in ZIC23),
like CrA or the Cham cloud regions, while they were not selected
as kinematic members of Sco-Cen. We speculate that their ini-
tial sample by Gagné et al. (2018a), which includes sources from
US, UCL, and LCC, limits their ability to select these additional
groups. Their low signal-to-noise ratio, positional distance, and
slightly deviating motions from bulk Sco-Cen sources25 likely
prevented their classification as Sco-Cen groups.

Their method fits a mixture of Gaussians to data. Instead of
allowing arbitrary covariance matrices, Chronostar constrains
6D Gaussian distributions in XYZUVW to the following form.
Present-day observations are assumed to follow a ballistically
evolved Gaussian in Galactic potential. The free-fitting parame-
ters are a cluster’s mean birth position in phase space, birth posi-
tional and kinematic variance (the covariance matrix is assumed
uncorrelated), and age. The fitting is done via a modified EM
algorithm where the number of components is determined via
the BIC. ZIC23 state that they see evidence for substructure in
several groups. Thus, it has to be investigated if the groups found
in ZIC23 will eventually break into subgroups. When compared
to SigMA we can already see that the individual ZIC23 groups
generally contain more than one SigMA cluster (see Table E.2).

5.2.6. Comparison with Squicciarini et al. (2021)

Squicciarini et al. (2021, hereafter SGB21) studied 2745 poten-
tial US members (see Table 6) by selecting subgroups solely
based on kinematics. They cluster the US region into eight
groups that they call the clustered population (1442 stars), and
into one older diffuse population (1303), which is, however, dif-
ferently defined than the diffuse or velocity-diffuse populations
in DPP19 or SCF22.

When comparing the SGB21 selection to the SigMA clusters,
we find that there are 2575 cross-matches (∼94%) in total out
of the 2745 sources in SGB21. Hence, we miss 170 SGB21 US
candidate members, while 13 sources are lost due to our box
and quality criteria (Sect. 2). Focusing on the SGB21 candidate
members in the clustered populations (1442), there are only
seven sources that are only in SGB21 and not in SigMA, while we
miss 163 of the SGB21 diffuse members, which are overall more
uncertain members. In total, we find almost a factor of two more
clustered sources with SigMA in the same FOV as SGB21, 2717
versus 1442 (see Table 6). The 2575 sources match with nine

24 ZIC23 define group E as a complex, multi-population component.
25 Possibly caused by internal feedback mechanisms in the history of
Sco-Cen (e.g., Zucker et al. 2022).
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of the SigMA clusters, while only seven SigMA clusters have a
significant number of matches.

We list the cross-matches of SigMA with SGB21 in
Table E.4. We highlight more significant matches here. Groups 1,
2, 3, and 4 match best with ρOph/L1688, ν Sco, δSco, and
βSco, respectively, while Group 6 also has significant matches
with βSco. Group 5 matches best with σSco, while the major-
ity of σSco is in the SGB21 diffuse population. Group 7 and
Group 8 match best with Antares, while the majority of Antares
is also in their diffuse population. Generally, the Antares group
seems to split up into more than one cluster, also in other pre-
vious work. The two groups US-foreground and φLup have
only a few matches with the diffuse population. The SGB21 dif-
fuse population is largely contained within the SigMA groups
σSco, Antares, ρSco, and δSco, with some diffuse members
distributed among each mentioned group (see Table E.4). This
indicates that the diffuse population is maybe not a separate older
group but it contains stars that were not clustered by the method-
ology in SGB21, while they are clustered in SigMA.

The differences in the final cluster definition in US likely
arise from the different clustering methodologies. To bet-
ter understand the SGB21 approach we outline the basics
here. SGB21 use a semiautomated approach based on iterative
k-means clustering on a 4D sample, using 2D sky positions and
2D tangential velocities. The authors propagate the sky positions
15 Myr into the past and future, producing a new 4D data set
at each step; tangential velocities are constant throughout indi-
vidual data sets. By studying the sky distribution of each slice,
SGB21 visually identify over-densities. These over-densities are
extracted via k-means clustering in 4D space at a given time
step. Subsequently, the clustered data points are removed from
the data set, and the process of looking for over-densities starts
anew. The clustering process terminates when the authors cannot
find any apparent density peaks in the sky distribution.

Besides the feature space difference, SigMA has signifi-
cant differences compared to the SGB21 iterative clustering
approach. First, the k-means algorithm cannot deal with the
observed non-convex cluster shapes in projected coordinates.
The extracted clusters are 4D Voronoi cells26 that can have very
elongated shapes. Second, SGB21 analyze 2D projections of the
high-dimensional data to identify clusters visually. Thus, clus-
ter selection is influenced by projection effects and human judg-
ment. Conversely, SigMA employs a modality test directly in the
high-dimensional phase space, taking into account multidimen-
sional relationships between data axes. These rather different
approaches to extracting clusters in US make it clear that the
results cannot be compared at face value, while fractions of the
most robust clusters (ρOph/L1688, ν Sco, δSco, βSco, σSco,
and Antares) have been identified by either method.

5.2.7. Comparison with Miret-Roig et al. (2022b)

Miret-Roig et al. (2022a, hereafter MR22) recently applied a
Gaussian mixture model (GMM) to Gaia DR3 data of the US
region. They include radial velocities, when available, to select
the stellar groups. They identify seven stellar groups within
a FOV of about 220 deg2 that is centered on US, containing
2810 sources (see also Table 6). A cross-match with the SigMA
members gives 2683 matches; hence, we are missing 127
sources, of which 23 are outside of our box and quality crite-
ria (Sect. 2). This leaves 104 potential members that the SigMA

26 As far as we know, scaling between sky coordinates and tangential
velocities was not considered.

algorithm did not select. Within the same FOV SigMA contains
3089 Sco-Cen members.

When comparing the SigMA groups to the individual seven
MR22 groups in more detail, we find largely good agreement,
especially for ρOph, ν Sco, δSco, and βSco (see also Table A.1
in MR22 and Table E.4). The SigMA Antares and σSco groups
seem to be mixed in MR22, with significant fractions in both the
MR22 αSco and σSco. Finally, the MR22 πSco group, which
lies largely in the foreground of the other US groups, coincides
largely with two of the SigMA groups: US-foreground (which
we identified as a foreground population to the traditional US)
and ρSco. The latter is overlapping in space with Antares and
ρOph. The larger volume investigated with SigMA allows a more
complete sample of the US-foreground to be selected since the
MR22 FOV cuts off the outer edges of what they call πSco.

Since MR22 also use radial velocity information for a sub-
sample (∼30%), the classification of these 6D-selected sources
might be more robust compared to the 5.5D selection as used
by SigMA. Investigating the bona fide 6D-selected members in
MR22, we still find some mixing of SigMA clusters within MR22
clusters (and vice versa), especially concerning Antares and
σSco. These differences need more investigations in the future,
and dedicated cluster studies are called for (e.g., with Uncover,
Ratzenböck et al. 2020).

5.2.8. Comparison with Briceño-Morales & Chanamé (2023)

Briceño-Morales & Chanamé (2023, hereafter BMC23) present
another clustering study on US using Gaia EDR3 data. They
obtain a clustering solution by first combining the convergent
point method (Perryman et al. 1998) with a Gaussian Mixture
fit (Pedregosa et al. 2011) to identify kinematic groups with a
Bayesian approach. Second, they use OPTICS (Ankerst et al.
1999) to identify spatial substructure in XYZ. This is comple-
mented with age estimates based on Gaia photometry. Their
astrometrically clean sample obtained in the first step contains
3004 sources (USco kinematic group, KG). In the same FOV,
we find 3439 clustered Sco-Cen members (see Table 6).

The USco KG is first broken down into three KGs in a “cor-
rected tangential velocity space27”: ρOph KG, USco Young KG,
and USco Old KG. This suggests that USco comprises three
main kinematic components, with ρOph KG mainly correlat-
ing with the traditional ρOph region, and USco Young KG with
the traditional USco region. They argue that their USco Old KG
is a new yet unstudied population while pointing out that large
fractions of this KG are likely interlopers from UCL. Next, the
USco KG is independently substructured with OPTICS in the
XYZ space, delivering eight spatial clusters and one diffuse pop-
ulation. The latter are sources that OPTICS did not assign to a
cluster. In fact, the majority of sources in the USco KG are con-
tained in this diffuse population (∼67%).

Using OPTICS, it can be challenging to identify noise
points because there is no explicit noise cluster or appropri-
ate noise threshold. Instead, the noise specification is prone to
1D projection effects of the ordering algorithm (e.g., loss of
high-dimensional structure, small perturbations in data point
positions produce different orderings), which eventually pro-
duces the reachability plot (R-plot) from which clusters and
noise are determined. In particular, the presence of noise can
lead to the creation of many small clusters in the reachability
plot, making it challenging to identify clusters.

27 They use the velocity offset of vl,vb relative to expected tangential
velocities, derived from sources with known vr.
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When cross-matching the BMC23 and SigMA samples, we
find 2720 sources in common, 90.5% out of the 3004 BMC23
sources or about 79% out of the 3439 SigMA sources in the same
FOV. Hence, we find about 21% additional candidate Sco-Cen
members compared to BMC23 (see also Table 6). A detailed
overview of the matched clusters is given in Table E.4. We sum-
marize the best matches as follows.

There are five SigMA clusters that have relatively clear
matches with BMC23 spatial clusters, which are ρOph, βSco,
ν Sco, σSco (named αSco in BMC23), US-foreground (named
πSco in BMC23), and ηLup (named UCL in BMC23). How-
ever, all of these clusters have more or less significant frac-
tions contained in their diffuse population (Table E.4). Interest-
ingly, our δSco is equally contained within the BMC23 δSco
and ωSco, while the largest part of our δSco is in their diffuse
population. They also compare these two clusters to KRK21,
where they find that both, δSco and ωSco, are contained within
EOM17-H (which matches with our δSco). In this case, we find
that SigMA and KRK21 agree while BMC23 find further sub-
structure in δSco. At this stage, we do not know which result
is more physical, and future work is needed to understand this
conundrum.

The majority of SigMA’s Antares, ρSco, and Libra-South are
contained within their diffuse population; hence, these clusters
have not been identified as individual clusterings by BMC23. As
mentioned above, their αSco seems to match best with ourσSco
cluster (not with Antares), while they mention that the two stars
* alf Sco and * sig Sco are likely members of this cluster. This
connection is of interest since also other works seem to mix the
SigMA-Antares and SigMA-σSco clusters, which needs further
investigations in the future.

In their conclusions, BMC23 find an age-velocity correla-
tion, suggesting that older clusters have increasing deviating
tangential motions compared to ρOph (which they use as a start-
ing point) as a function of age. Moreover, they find a corre-
lation between cluster density and cluster age, suggesting that
these substructures expand at a measurable rate. Finally, they
argue that four potential supernovae happened in the US region
based on literature information (e.g., Breitschwerdt et al. 2016;
Neuhäuser et al. 2020; Forbes et al. 2021), cluster mass esti-
mates, and on certain “voids” that are identified in the 3D dis-
tribution of their cluster extraction. Notably, we do not see such
voids in the distribution of the SigMA clusters.

5.2.9. Concluding remarks on the comparison with the
literature

In Table 6, we summarize the comparisons with the litera-
ture, stating the overlap size and the percentages of recovered,
rejected, and new sources when comparing our sample to the
literature samples within the same FOV used in respective pub-
lications. The rejected sources can also be seen as missing since
they are still potential candidate members of Sco-Cen. We find
that we miss sources on the order of a few percent up to about
45%, while this depends on the subsamples we compare to.
For instance, some listed publications include compact cluster-
ings and also diffuse populations, which are generally differently
defined (e.g., velocity diffuse, remaining sources after clustering
steps, etc.). Compared to the more compact clusters, we only
miss sources on the order of <1% to a few percent. This under-
lines the robustness of the more compact clusterings, while the
so-called diffuse populations need to be further investigated, par-
ticularly in light of their physical nature. The velocity-clustered
X-ray observed sources, discussed in SCF22, contain the largest

fraction of missed sources. However, as mentioned in Sect. 5.2.3,
some of these members seem to have older ages in the CMD,
leaving only about 10% of potentially missed young Sco-Cen
members in SCF22.

Compared to other methods described in the literature,
SigMA consistently identifies more Sco-Cen candidate members,
surpassing other studies by 5–70%. We considered various esti-
mates of contamination, including 4–10% determined by older
sources in the CMD (Appendix D.1), 5.3 ± 3.1% determined by
SigMA’s internal approximation (Sect. 3.5.4), and 8.2±4.1% field
star contamination determined by Sco-Cen-like cluster simula-
tions (Sect. 4.2.2). Based on these estimates, the true field star
contamination rate likely lies between 2 and 12%. Given this
contamination estimate and the rate of yet undetected members
in comparison to prior work, we expect SigMA has contributed
a significant fraction of new, real member stars throughout Sco-
Cen (only exceptions are comparable US samples from SGB21
and possibly MR22).

The visual selection methods (e.g., Damiani et al. 2019;
Luhman 2022) contain about 6–10% candidate members not
detected by SigMA (Table 6). This is mainly due to these meth-
ods’ “select-by-eye” approach in projected subspaces of the mul-
tidimensional phase space to identify Sco-Cen candidates. How-
ever, unsupervised machine learning methods find more spatial
and kinematical substructures in the Sco-Cen population and
arguably produce samples with lower contamination levels com-
pared to visual selection methods. More importantly, the SigMA
method reveals a more complex velocity structure across the
entire Sco-Cen, critical for a physical description of the forma-
tion process of OB associations such as Sco-Cen. When com-
paring SigMA to other unsupervised methods, which studied the
whole Sco-Cen area (in particular Kerr et al. 2021), we find
a compatible substructure. In contrast, the SigMA clusters are
generally richer in members. The additional sources cannot be
explained with our contamination estimate (about 2–12%) since
this lies below the fraction of new sources when compared to
Kerr et al. (2021; about 50% new sources).

Focusing on the US region, we generally find good agree-
ment between cluster selections from SGB21, KRK21, MR22,
BMC23, and SigMA. Not surprisingly, the denser clusters in US
(ρOph, ν Sco, δSco, and βSco) have been recovered well by
the different approaches. The Antares, σSco, ρSco, and US-
foreground clusters are slightly more dispersed and have less
clear matches across the methods (e.g., merged or distributed
differently in different samples). As revealed by Gaia data, the
newly identified velocity substructure in the US region is rele-
vant to understanding the star formation processes at play in Sco-
Cen and will continue to be an obvious target for future studies
and surveys. Adding radial velocity information will be criti-
cal to characterize these clusters further, as already presented,
for example, by Miret-Roig et al. (2022a). Considering the five
mentioned studies, the somewhat different clustering results for
the US region call for a reanalysis of this important young region
to better understand its star formation history.

When considering the cross-contamination between clusters
in general, we find that the clustered substructure within Sco-
Cen as extracted with SigMA is generally differing to some
degree from other clustering results. The deviations have a
different extent depending on which literature sample we com-
pare to (see Tables E.2–E.4). There are some clusters, in par-
ticular in USco, where several studies agree, highlighting the
robustness of these clusters. However, we rarely find a perfect
match, and the final cluster membership of an individual source
is often highly uncertain, mainly if located at the outskirts of
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a cluster’s center in a tightly packed environment surrounded
by other clusters. Such behavior is expected since we find in
Sect. 4.2.2 that cross-contamination leads to a per-cluster com-
pleteness estimate of about 76% of recovered sources when test-
ing on mock data (while this fraction also considers sources lost
to the field). Nevertheless, the substructure of Sco-Cen as iden-
tified with SigMA is a good starting point for future studies, sup-
ported by the narrow CMD sequences per cluster (see the follow-
up study, Ratzenböck et al. 2023).

In conclusion, SigMA finds significant numbers of sources
not present in other samples (often more than 10% new sources,
Table 6) with a contamination fraction of about 2–12%, while
missing candidates when compared with visual selection meth-
ods (on the order of 10%). More work is needed to understand
the sources SigMA misses. A possible way forward toward a
most complete sample of Sco-Cen members is to use SigMA
cluster members and 3D velocities (by including radial veloc-
ities to select the most robust members) as training sets to the
Uncovermethod, a validated bagging classifier of one-class sup-
port vector machines (see the application in Ratzenböck et al.
2020 to the Meingast-1 stellar stream, Meingast et al. 2019). In
the near future, improved membership lists will allow a more
precise analysis of the star formation history of Sco-Cen, the ini-
tial mass function of each cluster, and the dynamic state of the
Sco-Cen complex.

6. Summary

In this paper we present SigMA, a method that explores the topo-
logical properties of a density field to define significant substruc-
ture. To test and validate SigMA, we applied it to Gaia DR3
data of the nearest OB association to Earth, Sco-Cen. The main
results of this work can be summarized as follows:
1. SigMA is a novel clustering method that interprets density

peaks separated by density dips as significant clusters. Using
a graph-based approach, the technique detects peaks and dips
directly in the multidimensional phase space.

2. SigMA is fine-tuned to large-scale surveys in astrophysics. In
this context, this new method is able to identify co-spatial
and co-moving groups with non-convex shapes and vari-
able densities with a measure of significance. SigMA is able
to appropriately incorporate 5D astrometric uncertainties
alongside radial velocity uncertainties, does not require any
photometric pre-filtering of stellar populations, and scales to
millions of points.

3. SigMA is capable of finding clusters in Gaia DR3 data,
reaching stellar volume densities as low as 0.01 sources pc−3

and tangential velocity differences between clusters of about
0.5 km s−1.

4. We validated SigMA on two simulated data sets and highlight
its merits in relation to established clustering techniques. Our
comparison shows that SigMA can significantly outperform
competing methods, especially in environments where clus-
ters are densely packed, such as the Sco-Cen OB association.
In these dense cluster situations, our simulations show that
SigMA has a mean contamination rate of 23.7 ± 13.1% and
a mean completeness rate of 76.2 ± 15.2. Considering only
the field star influence on contamination and completeness
(i.e., ignoring cross-contamination from neighboring clus-
ters), these scores improve to 8.2 ± 4.1% and 81.4 ± 2.0%.

5. SigMA identifies more than 13 000 Sco-Cen members located
in 37 individual clusters of co-spatial and co-moving young
stars. The CMD for each cluster shows a well-defined
sequence. Because SigMA is not aware of a star’s brightness or
color, the well-defined sequences constitute a validation test
for the ability of SigMA to extract coeval populations. A large

fraction of clusters are seen toward well-known Sco-Cen mas-
sive stars, too bright to be in Gaia DR3, and we (tentatively)
associated respective clusters with them. Because SigMA is
not aware of these massive stars, their association with SigMA
clusters also constitutes a validation test for SigMA.

6. When comparing the 37 SigMA stellar populations in Sco-
Cen to previous results from the literature, we find mostly
agreement; however, several discrepancies exist. When com-
pared to visual selection methods used recently on Gaia data
of Sco-Cen, we find that we might be missing roughly 10%
of candidates, while at the same time finding a higher total
number of stellar members. Unsupervised methods such as
SigMA find more spatial and kinematical substructure for the
same data set and produce samples with lower contamination
levels.

In the future, in particular when combined with auxiliary radial
velocity surveys, a detailed comparative study of the different
clustering methods is fully warranted. The application of SigMA
to upcoming Gaia data releases promises28 the unveiling of
detailed cluster distributions such as the one presented here but
for all the near star-forming regions. Reconstructing an accu-
rate and high-spatial-resolution star formation history of the last
50 Myr in the Local Milky Way with Gaia data is within reach.
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Appendix A: Gaia DR3 data retrieval and details on
quality criteria

The Gaia DR3 data were downloaded from the Gaia Archive29

using the following ADQL query:

SELECT * FROM gaiadr3.gaia_source
WHERE (1000./parallax*COS(l*PI()/180)*COS(b*PI()/180))>-50.
AND (1000./parallax*COS(l*PI()/180)*COS(b*PI()/180))<250.
AND (1000./parallax*SIN(l*PI()/180)*COS(b*PI()/180))>-200.
AND (1000./parallax*SIN(l*PI()/180)*COS(b*PI()/180))<50.
AND (1000./parallax*SIN(b*PI()/180))>-95.
AND (1000./parallax*SIN(b*PI()/180))<100.
AND parallax_over_error>4.5

The first six expressions give the XYZ box conditions,
while X is positive toward the Galactic center, Y is posi-
tive in the direction of Galactic rotation, and Z points toward
the Galactic north-pole. XYZ can also be calculated using
astropy.coordinates.SkyCoord from Astropy v4.0. The
parameter fidelity_v2 from Rybizki et al. (2022) was retrieved
with the following ADQL query, using the Topcat TAP Query
and the GAVO service30:

SELECT gaia.*
FROM gedr3spur.main AS gaia
JOIN tap_upload.t1 AS mine
USING (source_id)

We support our quality criteria choices from Sect. 2 as
follows. Using fidelity_v2> 0.5 is suggested as separator into
“good” and “bad” sources by Rybizki et al. (2022) (see also
Zari et al. 2021). Using a threshold of 0.9 would give slightly
cleaner data; however, few sources lie in the range between 0.5
and 0.9 (∼2% in the box), and we opted for the less conserva-
tive value. The additional cut using parallax_over_error,
which is similar to the signal-to-noise ratio (S/N$), is used to
reduce further parallax uncertainties. The choice of the threshold
S/N$ > 4.5 is further supported by Rybizki et al. (2022), where
they apply different classifiers (high- and low-S/N classifiers)
for sources above and below this threshold. To avoid inhomo-
geneous data, we decided to include this S/N threshold. More-
over, we want to avoid too high parallax errors. As mentioned,
we used the inverse of the parallax to estimate the distance to a
source, which gets unreliable if the uncertainties are too large.
For more distant sources, or intrinsically faint sources with high
parallax errors, the distance estimate becomes a nontrivial infer-
ence problem (e.g., Luri et al. 2018; Bailer-Jones et al. 2021). In
Table A.1 we list the typical uncertainties of the various param-
eters for sources inside the box after the applied quality criteria,
and also separately for sources that are selected as members of
the 37 Sco-Cen clusters (given in brackets in Table A.1). It can
be seen that the majority of the sources in the box (2σ) have
parallax uncertainties below 0.6 mas.

For SigMA we used the 5.5D phase space, as mentioned
in Sect. 2, for which we used tangential velocities in km s−1.
The proper motions (µ∗α = µα cos(δ), µδ) are transformed from
mas yr−1 to tangential velocities in km s−1 as follows, where the
conversion constant 4.74047 is in units of km yr s−1:

vα = 4.74047 · µ∗α/$
vδ = 4.74047 · µδ/$. (A.1)

Moreover, we corrected the tangential motions for the Sun’s
reflex motion, resulting in tangential motions relative to the LSR,

29 https://gea.esac.esa.int/archive/
30 https://dc.zah.uni-heidelberg.de/, German Astrophysical
Virtual Observatory

Table A.1. Typical parameter uncertainties for sources used in our
analysis.

1, 2, 3 σ percentiles
Uncertaintiesa 68.3% 95.5% 99.7%

σ$ (mas) < 0.13 (0.08) 0.56 (0.34) 1.17 (0.94)
S/N$ > 47.6 (83.2) 9.3 (20.8) 4.8 (7.5)
σd (pc) < +3.8 (+1.8)

−3.6 (−1.7)
+26.0 (+7.4)
−21.0 (−6.7)

+65.2 (+23.8)
−43.7 (−18.0)

σµα (mas yr−1) < 0.13 (0.09) 0.60 (0.39) 1.47 (1.06)
σµδ (mas yr−1) < 0.12 (0.08) 0.54 (0.32) 1.34 (0.89)
σvα (km s−1) < +0.4 (+0.2)

−0.4 (−0.2)
+3.2 (+0.6)
−2.7 (−0.6)

+12.1 (+2.1)
−8.9 (−1.7)

σvδ (km s−1) < +0.4 (+0.2)
−0.4 (−0.2)

+3.3 (+0.8)
−2.8 (−0.7)

+12.1 (+2.4)
−8.9 (−1.9)

σvr (km s−1) < 3.3 (5.8) 8.3 (13.0) 26.2 (37.3)
σX (pc) < +2.3 (+1.4)

−2.2 (−1.4)
+20.1 (+6.3)
−16.5 (−5.7)

+54.6 (+20.3)
−36.8 (−16.0)

σY (pc) < +1.6 (+0.6)
−1.5 (−0.6)

+13.4 (+2.9)
−11.2 (−2.7)

+41.5 (+12.1)
−28.1 (−9.8)

σZ (pc) < +0.9 (+0.4)
−0.9 (−0.4)

+6.5 (+1.8)
−5.4 (−1.7)

+19.6 (+6.4)
−13.4 (−5.1)

Notes. The listed uncertainties give the threshold below which the given
percentage of sources can be found in the whole box (or in the SigMA
Sco-Cen selection, in parentheses). aGiven are the uncertainties for the
following parameters: parallax, distance, proper motions in the direc-
tion of α and δ, tangential velocities in the direction of α and δ, radial
velocities from Gaia DR3, and XYZ. The radial velocities are avail-
able for a subsample of 367,127 sources (37%) inside the box (or 4967,
40%, in the SigMA Sco-Cen selection). For the derived parameters we
give lower and upper uncertainty thresholds, since the errors, gained via
a Monte Carlo approach, get asymmetric for large parallax errors.

using the values by Schönrich et al. (2010). This conversion is
accomplished with the help of Astropy, by defining the below
sky coordinates. For a conversion of heliocentric proper motions
to proper motions relative to the LSR, the radial velocity can
be set to an arbitrary value in the sky-coordinate definition of
Astropy (here set to 0), since different RV values do not change
the outcome of this conversion.

from astropy.coordinates import ICRS, LSR
from astropy import units as u

skyicrs = ICRS(ra = ra * u.deg,
dec = dec * u.degree,
distance = 1000./parallax * u.pc,
pm_ra_cosdec = pmra * u.mas/u.yr,
pm_dec = pmdec * u.mas/u.yr,
radial_velocity = 0. * u.km/u.s)

pma_lsr = skyicrs.transform_to(LSR()).pm_ra_cosdec.value
pmd_lsr = skyicrs.transform_to(LSR()).pm_dec.value

v_a_lsr = 4.74047 * pma_lsr / parallax
v_d_lsr = 4.74047 * pmd_lsr / parallax

In Sect. 5.2 we compare the SigMA clusters with recent
literature samples. To this end, we cross-match the sam-
ples using the Gaia DR3/EDR3 source_id. This cross-match
is straight forward for the samples of Schmitt et al. (2022),
Squicciarini et al. (2021), Luhman (2022), and Miret-Roig et al.
(2022a) who used Gaia DR3/EDR3 data, which allows a direct
match with the source_id. In the case of Damiani et al. (2019),
Kerr et al. (2021), and Žerjal et al. (2023), who used Gaia DR2
data, we first retrieve the Gaia DR3 source_id using the
gaiadr3.dr2_neighbourhood catalog from the Gaia Archive,
since the DR2 and DR3 source_ids are not generally the same.
Such a cross-match delivers a few sources that have several pos-
sible matches of DR3 with DR2 sources (see Torra et al. 2021;
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Gaia Collaboration 2021). In such cases, we chose the closest
match, using the provided angular_distance parameter.

Appendix B: Detailed information and background
on the methods

In this appendix, we give in-depth and background information
on some aspects of our methodology from Sect. 3.

B.1. Related work: Cluster analysis

In the following, we present a cross section of related work upon
which SigMA rests. From the vast corpus of data mining and
statistics literature, we focus specifically on identifying stable
groups using density-based clustering methods.

Hierarchical, density-based clustering

The strength of level-set formulation (see Eq. (3) and further dis-
cussions in Sect. 3.1.3) lies in the natural emergence of a cluster
tree, a clustering hierarchy that arises from sweeping the density
threshold λ from ∞ → −∞. With a continuous change in λ, the
number of connected components changes when the threshold
passes through a critical point in f , and thus ∇ f = 0. A new
cluster is born when λ reaches the height of a mode in f . On
the other hand, a cluster dies when λ traverses a saddle point or
a local minimum, in which case the two connected components
merge into a single one. The cluster creation and merging pro-
cess is schematically shown in Fig. 1.

However, estimating the connected components of level
sets, while easy in one dimension, gets nontrivial in higher
dimensions. Consequently, algorithmic realizations of the
Hartigan (1975) level-set idea rely on graph heuristics and
graph theory in which connected components arise natu-
rally. Early implementations by Azzalini & Torelli (2007) and
Stuetzle & Nugent (2010) and subsequent theoretical anal-
yses (Chaudhuri & Dasgupta 2010; Kpotufe & von Luxburg
2011; Chaudhuri et al. 2014) adopt a graph G(λ) over the data
samples where vertices and/or edges are filtered according to λ,
and thus {x ∈ X : f̂ (x) ≥ λ}31.

However, the use of graphs to represent the connectiv-
ity comes with its own limitations. This scheme guarantees
that two samples from one connected component of G(λ) are
to be found in a connected component in L(λ). However,
as Stuetzle & Nugent (2010) point out, the reverse implica-
tion is not necessarily given. This means samples from the
same connected component in L(λ) may end up in different
connected components of G(λ). Since density estimates are
inherently noisy, usually, too many clusters arise from this iter-
ative filtration procedure. To counteract this over-clustering,
the resulting graph cluster tree is usually pruned in a post-
processing step during which spurious clusters are identified and
merged back into the “mother cluster” (Stuetzle & Nugent 2010;
Kpotufe & von Luxburg 2011; Chaudhuri et al. 2014).

The HDBSCAN algorithm

A well-known algorithm belonging to the family of hierarchi-
cal level-set methods is the HDBSCAN (Hierarchical Density-
Based Spatial Clustering of Applications with Noise) algorithm

31 Edges are commonly assigned the minimum density sampled along
the path connecting two vertices.

(Campello et al. 2013), which recently has been gaining atten-
tion in the astronomical community (e.g., Kounkel & Covey
2019; Kounkel et al. 2020; Hunt & Reffert 2021; Kerr et al.
2021). In order to prevent over-clustering, the authors intro-
duce the minimum cluster size parameter that provides an inter-
pretable pruning strategy.

At each cluster split decision, the smaller cluster created is
merged back into the mother cluster if it has fewer than min-
imum cluster size points; otherwise, a new cluster is created.
To obtain a flat clustering result from the cluster tree, HDB-
SCAN estimates the stability of a cluster in the hierarchy via
the concept of relative EOM. Similar to the concept of excess
mass (Muller & Sawitzki 1991), it measures the lifetime and size
of a cluster. The heuristic favors more prominent and stable clus-
ters that live longer in the cluster tree. For example, a group that
persists for a long time as a single connected component should
be preferred over the two small clusters it breaks into and which
quickly vanish.

However, the EOM criterion tends to produce too large
clusters in practice. If a large group persists in the hierarchy
for a long enough time, its children are unlikely to exceed
the parent’s EOM. Alternatively, the HDBSCAN implementa-
tion by McInnes et al. (2017) offers the opportunity to extract
the leaf nodes from the cluster tree. Since the leaf nodes are
extracted only considering the minimum cluster size criterion,
the resulting clusters lack any stability guarantee; thus, the clus-
tering result is highly susceptible to random density fluctua-
tions. In general, these methods suffer from complex and hard-
to-interpret pruning procedures and parameters, which affect the
confidence and interpretability of the clustering result.

Topological methods

Extracting a flat clustering from the cluster tree requires a notion
of cluster stability. As discussed, the concept of relative EOM,
which inherently depends on the pruning process, can lead to
too coarse clusters. A related pruning heuristic comes from con-
sidering the topological persistence of each mode in f̂ , intro-
duced by Chazal et al. (2013). Persistence is defined as the lifes-
pan of each connected component. The notion of persistence is
shown to be stable under small perturbations to the initial den-
sity f (Edelsbrunner et al. 2000; Zomorodian & Carlsson 2005;
Ghrist 2008).

A variation on the persistence formulation is proposed by
Ding et al. (2016), who instead of thresholding the cluster life-
time use cluster saliency, ν, defined by the ratio of birth and death
density, as a cluster stability criterion. By varying ν between 0
and 1 the cluster tree is revealed and the most stable and long-
lived configuration is chosen as an appropriate clustering result.

While easy to interpret, these stability parameters can get
quite tedious to select in practice. In the large data and clus-
ter regime, the separation between stable and unstable clusters
becomes less apparent. In these limiting cases, selecting the
input parameters again warrants a proper parameter search.

Extracting stable and significant clusters

Compared to the notion of persistence, there is also growing
research to apply statistical methods that test the modality struc-
ture of the data. These methods offer the advantage of an inter-
pretable and meaningful parameter α, defining the significance
level of a corresponding hypothesis test. The null hypothesis H0
commonly assumes that the data, or subsets of it, are sampled
from a unimodal density, whereas the alternative hypothesis H1
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suggests multi-modality. The null hypothesis is rejected at a sig-
nificance level α if the p-value from the corresponding test pro-
cedure exceeds this significance level.

We identify first applications of hypothesis test procedures in
the clustering literature in the context wrapper methods around
the k-means and EM frameworks. G-means (Hamerly & Elkan
2004) employs the Anderson-Darling statistic to test the
hypothesis that each cluster is generated from a Gaussian
distribution. Instead of testing on a per-cluster basis, Pg-
means (Feng & Hamerly 2007) tests the whole GMM at once.
Dip means (Kalogeratos & Likas 2012) proposes an incremental
clustering scheme for selecting k in k-means that employs Har-
tigan’s dip statistic (Hartigan & Hartigan 1985). If the distance
distribution of one or more points to their co-cluster members
exhibits a significant multimodal structure, the cluster is split.

Skinny-dip (Maurus & Plant 2016) also implements Harti-
gan’s dip test and applies it to 1D linear projections of the data
set. Distinct density peaks are to be identified based on the gradi-
ent of the projected CDF. By projecting the data iteratively into
multiple axes, the samples are partitioned into clusters. Skinny-
dip is specifically able to handle background noise very well;
however, it considers noise samples to be uniformly distributed
and clusters to be axis-parallel.

These algorithms, however, are intrinsically tied to con-
vex or Gaussian cluster assumptions. The recently proposed
M-dip (Chronis et al. 2019) is able to deal with arbitrarily ori-
ented and shaped clusters, which applies a simulation strategy
to approximate values for the smallest density dips of unimodal
data sets of the same size and density. However, we do not want
to depend on simulations but directly obtain a measure of signif-
icance from given data.

B.2. Testing for uni-modality

Here we highlight the work of Burman & Polonik (2009) more
closely, whose modality test procedure we adopt in this work.
The modality procedure is tied to the notion of a density dip
along a path between two points in the data set. In the following,
we aim to formally define the concept of such a path.

A formal description of the test procedure

We consider directed, continuous paths from x1 to x2 through
input space X. By assuming there exists a parametrization r(t),
with t ∈ [0, 1], the path becomes the image of r(t). With this
map, we can uniquely express every point on the path via the
parameter t. For example, its start and endpoints are given by
x1 = r(0) and x2 = r(1), respectively.

Let f be the underlying density function and x1 and x2 two
candidate modes of f . We assume, without loss of generality,
that f (x1) < f (x2). If all possible paths undergo a density dip
when moving from x1 to x2, both points are found in two distinct
modal regions:

∃ t ∈ (0, 1) : f (r(t)) < f (x1) (B.1)

Conversely, if we can find a path between x1 and x2 where
all points have a higher density than x1, both points are part of
the same modal region:

f (r(t)) ≥ f (x1) ∀ t ∈ (0, 1]. (B.2)

Eq. (B.2) describes the case of single-modality, which consti-
tutes the null hypothesis we aim to reject. For general pairs of
modal candidates, it becomes

f (r(t)) ≥ min( f (x1), f (x2)) ∀ t ∈ (0, 1]. (B.3)

An equivalent and useful formulation is obtained by taking the
logarithm on both sides; after that, the left side is subtracted from
the inequality:

SB(t) := −log f (r(t)) + min(log f (x1), log f (x2)) . (B.4)

Using the variable SB(t), we can formulate the null hypothesis
as follows:

H0 : SB(t) ≤ 0 ∀ t ∈ (0, 1). (B.5)

Rather than testing H0 across the entire path, a point-wise test
H0,t : SB(t) ≤ 0 for some values of t is employed.

Since we do not have access to the underlying density f ,
we cannot directly test the hypothesis in Eq. (B.5). Instead,
we have a data set of d-dimensional random variables drawn
from f . Given proper normalization of the coordinate axes (see
Sect. 3.3.3), Burman & Polonik (2009) show that the follow-
ing expression is asymptotically standard normal distributed and
converges – up to a constant factor – to SB(t) as the number data
samples approaches infinity:

ŜB(t) = d
√

k/2
[
log dk(r(t)) −max(log dk(x1), log dk(x2)

]
.

(B.6)

Here dk(x) denotes the distance to the kth nearest neighbor of
the point x. The distance is an approximation to the density f .
Due to their inverse proportionality, the sign is flipped between
Eq. (B.4) and Eq. (B.6), and the minimum is replaced with the
maximum function.

Since the corresponding test statistic ŜB(t) is approximately
standard normally distributed, the null hypothesis is rejected at
significance level α if

ŜB(t) ≥ Φ−1(1 − α), (B.7)

where Φ is the standard normal CDF. Therefore, if any t ∈ (0, 1)
fulfills condition (B.7), H0 is rejected.

Due to the employment of the k-NN technique, this test pro-
cedure applies naturally to multivariate data without the need to
project the data onto a 1D line, as is the case for most modality
tests. Furthermore, nearest neighbor queries have access to very
efficient algorithms such as the kd-tree (Bentley 1975), which
reduces neighbor searches to only O(logN) distance computa-
tion. Thus, these considerations allow us to study the modality
structure of the data set at Gaia data scales without careful pro-
jection loss considerations.

Empirical results

Burman & Polonik (2009) describe the iterative application of
the test procedure to modal candidates to cluster the data into sig-
nificant modal regions. However, the test is employed along the
straight line path connecting two modes, which limits the proce-
dure to convex cluster shapes only. Moreover, enough samples
must be tested along the path to detect significant dips reliably.

We provide a natural extension to the presented procedure,
which applies to arbitrary cluster shapes while reducing the num-
ber of test evaluations to one. In Sect. 3.2, we describe the
modification in more detail and argue that reducing the origi-
nal method to a single point-wise evaluation at the saddle point
leaves the test unchanged.

To substantiate this statement, we empirically validate our
method on simulated data. In particular, we aim to show that
these changes do not affect the test statistic distribution under
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Fig. B.1. Test statistic distribution, ŜB, of our reduced test procedure on
a unimodal data set. The distribution is stable to variations in different
parameters and respective values (as shown in the corresponding rows
and columns).

the null hypothesis. According to Burman & Polonik (2009), the
test statistic ŜB is standard normally distributed under H0, which
assumes uni-modality between two points in the input space.

Figure B.1 shows the test statistic distribution ŜB of our
reduced test procedure on a unimodal data set. To faithfully test
the distribution under H0, we require a unimodal data set with
Gaia and Sco-Cen-like positions and kinematic properties, real-
istic errors, and suitable size. Since the Gaia EDR3 mock cata-
log (Rybizki et al. 2020) reproduces kinematic features found in
the Milky Way, its uni-modality is guaranteed.

Instead, we directly use data within the box defined around
Sco-Cen in Eq.(1). We randomly shuffle the observations in each
feature to remove any local over-densities. This procedure leaves
marginal distributions unchanged while fully de-correlating the
data. Since all marginal distributions are unimodal, the joint dis-
tribution (implicitly constructed as a factorization of marginals)
is equally unimodal.

To gauge parameter effects on the test statistic distribu-
tion, we vary the sample size and three SigMA parameters
across different values32. The parameters are the overall sample
size, the k parameter of k-NN density estimation method (see
Sect. 3.3.2), the β parameter of the underlying β-skeleton graph
(see Sect. 3.3.1), and the velocity scaling factor (see Sect. 3.3.3).

As shown in Fig. B.1, varying the given parameters within a
sensible range does not modify the test statistic distribution. Due
to its stability, a single test statistic distribution under H0 can be
universally assumed over different parametrizations of SigMA.

The ŜB distribution on unimodal data closely follows a zero-
mean Gaussian. However, in our tests, the standard deviation dif-
fers slightly from unity as stated by Burman & Polonik (2009).

32 While varying one parameter, the remaining ones are set to their
default values as described in Sect. 3.3

We update its value to the average standard deviation across our
tests of σ = 0.78.

B.3. Determining velocity scaling factors

Here we discuss the derivation of the scaling factor distribution,
which we used to weigh the velocity subspace in the clustering
process. A more detailed justification is provided in Sect. 3.3.3.

We replace the scaling factor variable cv with y to simplify
and shorten the reading flow. Additionally, compared to the main
text, we denote the distance to a cluster with r instead of d. This
notation makes the integration alongside the differential dr easier
to read (otherwise, the differential would be dd).

B.3.1. Statistical model

Figure 4 shows the relation between a cluster’s distance and the
scaling factor y alongside determined uncertainties. We observe
an approximately linear relationship between the cluster dis-
tance and the scale factor that we aim to model. We observe that
determined uncertainties for the ith data point σi cannot account
for deviations from any hypothetical regression line. Thus, we
include the simple assumption in the model that reported vari-
ances are underestimated by some factor, f . The scaled variance
for the ith sample becomes the following:

s2
i = σ2

i + f 2(mxi + b). (B.8)

Here the parameters m and b represent the slope and intercept of
the regression line, respectively.

We assume Cauchy distributed deviations from the regres-
sion line to further reduce the influence of outliers. The Cauchy
distribution provides a robust statistical model that naturally han-
dles observations with considerable deviations from the mean
with its longer-than-normal-tails (Lange et al. 1989). The scale
parameter becomes the adjusted variance in Eq. (B.8). In this
model, given a distance to a stellar cluster, ri, a modified scal-
ing factor uncertainty, si, a fractional amount, f , a slope, m, and
an intercept, b, the density of observed velocity scaling factors
p(yi | ri, si, f ,m, b) becomes

p(yi | ri, si,m, b) =

πsi

1 +
(yi − mri − b)2

s2
i

−1

. (B.9)

By factoring these conditional probabilities for the N data points
(assuming statistical independence between them), we obtain the
likelihood:

L =

N∏
i=1

p(yi | ri, si,m, b). (B.10)

Using Bayes’ theorem, we obtain the posterior probability den-
sity function (PDF):

p(m, b, f | {yi}
N
i=1, I) ∝ p({yi}

N
i=1 | m, b, f , I) p(m, b, f | I). (B.11)

The PDF p(m, b, f | I) describes our prior knowledge of the line
parameters (m, b) and the scaled variance f , while I summarizes
all the prior knowledge of the ri and σi. We employed weakly
informative priors (as the problem is relatively low dimensional,
this does not affect the inference outcome) with normal, zero-
mean prior densities for m and b with a standard deviation of
20. The prior PDF for f follows a half-Cauchy distribution with
β = 10. The Half-Cauchy distribution provides a suitable prior
PDF as it is truncated to have nonzero probability density on R+.
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To obtain samples from the posterior PDF, we used
PyMC (Salvatier et al. 2016), a publicly available code that imple-
ments the MCMC method. For each line parameter (m, b), we
computed its maximum a posteriori position, representing the
best-fitting line. We generate samples from the posterior predic-
tive distribution to estimate the uncertainty in y around the mean
at each location r. Figure 4 and B.3 show the 1σ credible interval
determined via computing the 68% high-density interval (HDI)
of generated posterior predictive samples.

B.3.2. Model caveat

The relationship between the dispersion in position and veloc-
ity space is, in principle, not affected by the observer. We con-
jecture that the observed correlation likely stems from differ-
ent magnitudes of observational uncertainties between tangen-
tial velocities and the parallax. Figure B.2 shows the distribution
of the ratio between measured distance and tangential velocity
uncertainties as a function of distance33. We identify an almost
perfect linear trend when plotting the rolling median (window
size 5 pc) for sources within 500 pc. This trend suggests that,
on average, the distance error (i.e., parallax error) grows faster
than the tangential velocity error when moving away from the
observer (which is to be expected). This relationship suggests
a faster growth rate in positional cluster dispersion than in on-
sky motions caused by the convolution with (on average) larger
uncertainties. It directly affects the density by smearing out the
unobserved source distribution in respective positional and kine-
matic subspaces at different scales as a function of distance,
which we aim to counteract using scaling factors conditioned
on distance.

This relationship suggests deriving the scaling factors
directly from the observed error ratio distribution. However, this
entails propagating the uncertainties through the complex selec-
tion functions of clustering algorithms. Instead, we aim to derive
the relationship directly from data from extracted clusters in the
Gaia data set (see Sect. 3.3.3 and Fig. 4).

As a final validation to choosing a linear model (assum-
ing a correlation between distance and the dispersion relation)
over a constant one (assuming variable independence), we fit a
constant and linear model to the data. As the linear model, the
constant model assumes Cauchy distributed deviations from the
mean and assumes that reported variances are underestimated
by some factor f . We employed the same weakly informative
priors for the intercept and factor parameters (b, f ). Using sam-
ples drawn from the posterior distribution and the computed log
point-wise posterior predictive density, we applied leave-one-out
cross-validation (Vehtari et al. 2017) and the widely applicable
information criterion (Watanabe 2010) to perform model selec-
tion. We find that both criteria significantly favor the linear over
the constant model.

33 The uncertainties in distance and tangential velocity have been
obtained by propagating the uncertainties in parallax and proper
motions. We restrict the sample to sources with small relative uncertain-
ties to guarantee minor uncertainty approximation errors, using quality
criteria discussed in Eq. (2). Modifying the quality criteria affects the
range of y values but does not eliminate the linear trend between dis-
tance and the presented uncertainty ratio when analyzing the rolling
median.

Fig. B.2. Frequency distribution of the ratio between measured dis-
tance and tangential velocity uncertainties as a function of distance. We
observe a linear trend (suggested by the rolling median, window size
5 pc) between this ratio and distance. We hypothesize that the empirical
distance-scaling relationship (see Fig. 4) is caused by this trend.

B.3.3. A distribution over scaling factors

We aim to obtain the distribution f (y | r0 ≤ r ≤ r1), which
describes the scaling factor (y) behavior for a given range of dis-
tances to clusters of interest. A simple way to find this distribu-
tion is to interpret the empirical linear model g(r) and associ-
ated Gaussian uncertainties as an improper probability function
f (r, y)34.

As we are dealing with an improper PDF, we consider the
following proportionality condition and handle the normaliza-
tion of the left-hand side later:

f (y | r0 ≤ r ≤ r1) ∝
∫ r1

r0

f (r, y) dr

∝

∫ r1

r0

f (y | r) f (r) dr. (B.12)

Since f (r) ∝ 1 is approximately independent of the distance
r, we can add it to the yet unknown constant normalization factor
and move it out of the integral. Hence, we can write the target
distribution as

f (y | r0 ≤ r ≤ r1) ∝
∫ r1

r0

f (y | r) dr. (B.13)

Thus, to obtain a solution to Eq. (B.13), we need an expres-
sion for the conditional PDF f (y | r). We assume that inlier data
are Gaussian distributed around the linear model with a vari-
able standard deviation σ(r), which we estimate from the 1σ
HDI of generated posterior predictive samples. The distribution
of scaling parameters y conditioned on the distance r can then be
approximated via the following expression:

f (y | r) ∝ exp
(
−

(y − g(r))2

2σ(r)2

)
. (B.14)

Figure B.3 schematically shows the integrating process where
the conditional PDFs f (y | r) are shown for r = 100 and r = 200.

Since we do not have any analytic expression for σ(r), we
numerically approximate the integral in Eq. (B.14). The top part

34 The marginal distribution f (r) is approximately uniform, i.e., f (r) ∝
1 over R+. Thus, the joint distribution f (r, y) is improper as it does not
integrate to unity.
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Fig. B.3. Scaling factor determination via the empirical distance-scaling
relationship. The scaling factor distribution for clusters at a distance
between 100 and 200 pc depends on the conditional distribution of scal-
ing factors at a given distance, f (cx/cv | r).
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of Fig. B.4 shows the resulting PDF when we solve f (y | r0 ≤

r ≤ r1) for sources in Sco-Cen, where we assume a minimum
distance of r0 = 100 and a maximum distance of r1 = 200.
Here an immediate caveat of our simple symmetric model uncer-
tainty assumption becomes apparent; the resulting distribution
has infinite support and, thus, a nonzero probability density for
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Fig. B.5. Simulating the impact of the fraction of missing vr measure-
ments on the relative error of inferred radial velocities. The top panel
shows relative errors of inferred vr on the open cluster sample as a func-
tion of missing-ness. The bottom panel shows the result of this study
using the compact cluster sample. We find twice larger errors on the
compact cluster sample. Additionally, the estimation procedure seems
almost independent of the number of missing radial velocity measure-
ments in both samples, except in a small region of the compact cluster
sample, where the error increases if fewer than 5% of sources have vr
measurements.

f (y < 0 | r). Since negative scaling is physically meaningless,
we limit the distribution to R+, thus setting f (y < 0 | r) = 0 and
normalizing the PDF to integrate to unity in R+.

We consider sampling strategies to obtain scaling factors for
the clustering process. Random sampling can generate almost
identical realizations, so the possible solution space might not
be covered evenly. Since we need to perform a separate cluster-
ing run for each sample drawn, keeping the number as small as
possible is essential. To cover the space evenly while consider-
ing the underlying probability distribution, we select a set of ten
samples that represent ten quantiles of the PDF. We separate the
PDF into ten continuous intervals with equal probabilities from
which we derive samples as the mean position of these intervals.

To compute the quantiles, we numerically determine the
CDF of f (y | r0 ≤ r ≤ r1). The CDF for r ∈ [100, 200]
is shown in the bottom part of Fig. B.4. The ten red scatter
points35 indicate samples drawn from the 10-quantile splitting
procedure where horizontal lines indicate equal probability inter-
vals. To invert the CDF and obtain scaling fraction samples from
F−1(y | r0 ≤ r ≤ r1) we used a numerical approximation36.

B.4. Influence of missing radial velocities on the bulk velocity
determination

In this section we examine the influence of missing radial veloc-
ities vr on the accuracy of determined bulk velocities. As dis-
cussed in Sect. 3.5.2, the bulk velocity of a sample is determined
by minimizing observed proper motions and radial velocities
against theoretical observables for a given cluster bulk motion.
Since radial velocities are not always available (in our sample
∼ 20% of sources have vr measurements), especially as more
distant objects are studied, we estimate how the fraction of miss-
ing vr affects the accuracy of determined bulk velocities and

35 The velocity scaling values are:
cv = {1.36, 3.44, 5.01, 6.37, 7.65, 8.93, 10.25, 11.77, 13.65, 16.86}.
36 We made use of the open source library pynverse v0.1.4.4 to
calculate the numerical inverse of the CDF.
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consequently inferred radial velocities of cluster members. For
this purpose, we simulate a given fraction of missing vr in our
open cluster and compact cluster samples (see Sect. 4.2 for
detailed descriptions of these samples) and compare the inferred
radial velocities of cluster members to known true values. We
repeat this process for several fractions of missing vr, ranging
from 1% missing to 100% missing, and calculate the mean rela-
tive error (and the 1σ quantile) between the resulting calculated
radial velocities (via the inferred bulk motion; see Sect. 3.5.2)
and the ground truth. Figure B.5 shows the influence of various
fractions of missing vrs on the relative error.

First, we find that relative errors of inferred vr on the open
cluster sample are, on average, around twice (1.97 ± 0.51) as
low compared to inferred vr from the compact cluster sample.
This difference is consistent with results reported in Sect. 4.2,
where we report very low contamination in clustering solutions
on the open cluster sample compared to the compact cluster sam-
ple. Further, the cluster sizes in the open cluster sample are, on
average, four times larger, providing significantly better statistics
to determine the bulk motion from the minimization procedure
in Eq. (12).

Second, we identify negligible correlation between the rela-
tive error in inferred radial velocities and the fraction of missing
vr measurements. In particular, the open cluster sample shows
no performance loss as the number of missing radial veloci-
ties goes to 100%. From this result, we conjecture that given
large enough clusters, the bulk velocity determination discussed
in Sect. 3.5.2 is sufficiently constrained by the observed proper
motions and, hence, independent of radial velocity measure-
ments. Although the relative errors also seem mostly indepen-
dent of the number of missing radial velocity measurements, we
observe an increased error of inferred vr in the compact cluster
sample as the missing-ness goes toward 100%. When no radial
velocities are available, the relative uncertainty of inferred vr
grows around twofold (mean relative error of 0.38 versus 0.21).
At the same time, the statistical dispersion (measured via the 1
σ range) appears to be almost stable when compared to cases
with access to vr measurements. Since the vr estimation proce-
dure seems independent of the number of missing radial velocity
measurements for less than 95% missing-ness, we recommend
using SigMA on data with at least 5% of available vr measure-
ments to keep radial velocity estimation errors to a minimum.
Since SigMA identifies clusters in 5D phase space and deter-
mines members most effectively if at least 5% of input stars
have radial velocity measurements, we refer to the entire SigMA
pipeline working in 5.5 dimensions (5.5D).

B.5. Consensus clustering

This section discusses algorithmic means to identify stable
cluster solutions from an ensemble of clustering results. To iden-
tify robust solutions, we represent all clusters across the clus-
tering ensemble in a graph. Each cluster of a single solution
from the ensemble is represented by one node. We connect two
nodes via an edge if two clusters share at least one common
point. Figure B.6 highlights this step in the first two frames. The
ensemble comprises three clustering solutions. The individual
runs A, B, and C contain three, two, and four clusters, respec-
tively. Each source is classified into a single cluster for a given
run, resulting in disjoint sets. Thus, edges connect clusters from
different runs.

Edges in the graph are weighted by the corresponding Jac-
card similarity, which measures their common overlap. The Jac-
card similarity is defined as the ratio of the intersection of two

sets over their union. Typically, a 0.5 or greater value indicates
a high similarity between two sets. Since this linkage is funda-
mental for determining the consensus result, it should avoid con-
necting dissimilar clusters. Thus, we remove edges with a weight
below 0.5 (see Fig. B.6, step 3). This threshold is quite conser-
vative, as it can separate similar cluster solutions, for example if
one cluster is a subset of the other. We relax the cut criterion in
the following way to avoid over-pruning the graph. Two clusters
a and b with respective sizes na and nb, where na > nb, are linked
if the nb densest points of a amount to a Jaccard similarity of 0.5
or greater with points from cluster b. This criterion guarantees
connectivity between cluster extractions at different isosurface
thresholds while separating ties to clusters that randomly frag-
ment into multiple subclusters.

Robust clusters throughout the ensemble will have strong
connections to their counterparts from different runs while hav-
ing none or very weak connections to other nodes in the graph.
Thus, a robust cluster solution builds a strong clique in this
graph37. In contrast, unstable clusters will have many weak con-
nections to many other clusters from different runs but none or
very few strong ones; see Fig. B.6, panel 4.

To extract all stable cluster solutions, we aim to identify
all strongly connected cliques in the graph (i.e., the consen-
sus result). Since individual sources and clusters can be part
of several cliques, we employed a voting strategy to determine
the final data partitioning (Vega-Pons & Ruiz-Shulcloper 2011).
Each clique is represented as a vector of length N, where N is
the number of sources in the data set. The N values correspond
to the sum of the individual clusters represented as 0–1 vector,
where all entries are 1 for sources inside a cluster and 0 else-
where. Each source is then associated with a single clique by
maximizing the respective entry at the source’s position (in the
vector). Thus, the larger a clique, the more likely it wins a vote.
To favor robust cluster solutions, we multiply each vector by the
median of its connection strengths. This number is maximized if
the cluster is unchanged throughout different runs. This step is
summarized in panel 5 in Fig. B.6.

B.6. Testing the independence assumption of resampled
Gaia data

When testing for multi-modality, SigMA simulates multiple real-
izations of the Gaia data set to see how robust density dips
between pairs of neighboring peaks are. In Sect. 3.4, we dis-
cuss how these realizations are used in a global hypothesis
test that determines whether samples of pairwise adjacent den-
sity enhancements are part of a single underlying mode. This
global hypothesis test combines individual tests from each real-
ization and evaluates the global null hypothesis that no p-value is
significant.

However, the choice of combining different p-values is
affected by the correlation structure between distinct tests. Typ-
ically, statistical tests require independence across tests to guar-
antee proper levels of specificity and sensitivity. In the case of
the commonly used Fisher’s combination test (Fisher 1934), pos-
itively correlated p-values increase the chance of type I errors
(rejects a true null hypothesis). To investigate the independence
assumption of p-values across resampled data sets, we consider
the effects that resampling has on the modality test procedure.

The modality test is fully described by the dimensional-
ity of the data and, most importantly, by the k-distances of

37 A clique in a graph is a subset of nodes that are all connected with
each other. Thus, every pair of nodes in a clique is joined by an edge.
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Fig. B.6. Consensus clustering pipeline for a simple example using an
ensemble of three clustering solutions: A, B, and C. (2) Clusters from
the ensemble are linked in a graph based on overlapping points. (3)
Edges between clusters are removed if the overlap between their mem-
bers is insufficient to assume a common cluster solution. (4) Cliques that
represent stable cluster solutions, i.e., consensus clusters, are extracted.
(5) A voting strategy determines the assignment of individual sources
to cliques.

modal and saddle points. Resampling the data set influences
these k-distances. The sampling of new data points is done
with Gaussians centered on mean astrometric observables with
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Fig. B.7. Log-log histogram showing the relative uncertainty of data
points, i.e., the ratio of positional uncertainty given by the error covari-
ance matrix over the nearest neighbor distance. The majority of data
points are far below unity. The concentration of relative uncertainty
values at zero indicates that k-distances across resampled data sets are
strongly correlated. The 1σ, 2σ, and 3σ lines indicate the percentiles
containing 68, 95, and 99.7% of the respective distribution.

heteroscedastic error covariance matrices available in the Gaia
database. We aim to use the covariance matrix in relation to the
nearest neighbor distance to estimate the interdependence of p-
values.

As the entries of the covariance matrix shrink to zero, the
resampled data points converge to the original data points until
they eventually coincide. At the same time, the p-values across
different data sets approach the same value, leading to a per-
fect correlation between them. On the other hand, if the standard
deviation along its principle axis (or any other direction for that
matter) extends far beyond a point nearest neighbor or even its
k-distance, the resampled data differs substantially from the orig-
inal one, de-correlating the p-values.

Figure B.7 illustrates this relationship for data in the Sco-
Cen box. The histogram shows the relative uncertainty of data
points (i.e., the ratio of positional uncertainty given by the error
covariance matrix over the nearest neighbor distance). The dis-
tances are computed in the space of observed astrometric quan-
tities where the uncertainties are assumed Gaussian. Most data
points are far below unity (i.e., errors are small relative to their
absolute values). The majority (68%, i.e., 1σ) has a relative
uncertainty below 0.08 (see the 68, 95, and 99.7% percentiles
in Fig. B.7 marked as 1σ, 2σ, and 3σ, respectively). The con-
centration of relative uncertainty values at zero indicates that
k-distances across resampled data sets are strongly correlated.
Thus, we cannot assume independence of p-values across differ-
ent samples.

B.7. Distribution of point-wise densities

Instead of directly recovering clusters from phase space data,
SigMA extracts modal regions, a mixture of field stars and clus-
ter members. To separate signal from background, we employed
a density-based classifier that selects cluster members as an over-
density over the background. We consider the distribution of
field stars and cluster members in univariate density to determine
a density threshold automatically.

As discussed in Sect. 3.5, we approximately can treat the
field star content as a uniform distribution locally around a
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cluster in phase space. A uniform distribution in phase space
translates to a Gaussian distribution in 1D density space (see
Sect. 3.5 for a more detailed discussion).

Cluster members are commonly modeled as multivari-
ate Gaussians (e.g., Gagné et al. 2014; Sarro et al. 2014;
Crundall et al. 2019; Riedel et al. 2017). Although observa-
tional findings point to more complex morphologies (e.g.,
Meingast & Alves 2019; Röser et al. 2019; Jerabkova et al.
2021; Meingast et al. 2019; Kounkel & Covey 2019;
Cantat-Gaudin et al. 2019a; Wang & Ge 2021; Coronado et al.
2022), the Gaussianity assumption provides a good starting
point to consider the point-wise univariate density distribution.
Figure B.8 shows multiple distributions of point-wise density
estimates of 100, 000 samples drawn from an N-dimensional
Gaussian38. The left column shows the likelihood of individual
samples. It provides an assessment of the local density under
the true model. The number of samples with a relatively high
likelihood decreases exponentially as the dimension N increases
from one (top row) to six (bottom row).

The curse of dimensionality plagues neighborhood queries
in high dimensions. As the dimensionality grows, points are
increasingly isolated, making neighborhoods no longer local.
This effect can already be seen for moderate dimensions in the
right column of Fig. B.8. It shows point-wise density estimates
obtained via the k-NN technique. Around the fourth dimension,
the distribution of k-distances starts to converge to a normal dis-
tribution, which incorrectly suggests an underlying uniform dis-
tribution in N-dimensional input space.

We computed point-wise density estimations in five and six
dimensions. Although we cannot specifically write down a gen-
erative model for stellar clusters in phase space, we can assume
that neighborhood queries are strongly affected by the given
dimensionality. Thus, we model background and signal contri-
butions as Gaussians in univariate density space.

B.8. Parameter optimization

The parameter choices of our proposed SigMA analysis pipeline
are tuned to Gaia data (see Sect. 3.3). In contrast, DBSCAN
and HDBSCAN, which we used to compare and test our cluster-
ing technique, are general clustering techniques whose parame-
ters we must set. Instead of using subjective, error-prone prior
knowledge to determine suitable parametrizations, we search
the space of possible clustering results for the best result. This
strategy measures the peak performance (in case of compre-
hensive/absolute prior knowledge) a clustering algorithm can
achieve. Thus, a comparison against the best results allows for
a discussion on methodological advantages and disadvantages
rather than reflecting poor parameter selection.

To search the space of possible model configurations, we
employed a grid search to evaluate the clustering algorithm on
a regular grid in parameters space. A grid search has signifi-
cant benefits in this scenario compared to other parameter tuning
methods, such as random search or Bayesian optimization. First,
a large portion of the parameter space is discrete. Thus, a finite
step size can cover the entire parameter space in these subspaces.
Second, the parameter spaces are low dimensional (maximally
4D), allowing densely spaced samples in each parameter axis.
Third, compared to random search and Bayesian optimization,
a grid search is deterministic and, thus, provides reproducibil-
ity. Further, as the grid is predetermined (compared to Bayesian

38 The Gaussian is chosen to have zero mean and identity covariance
matrix
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Fig. B.8. Distribution of point-wise density estimates of samples drawn
from an N-dimensional Gaussian. The left column shows the likelihood
of individual samples. It provides an assessment of the local density
under the true model. The right column shows point-wise densities esti-
mated via the k-NN technique. Increasing the dimensionality, N, from
one to six (top to bottom row), the distribution of point-wise densities
approaches a Gaussian.

optimization), it allows the computation to be fully parallelized,
thus guaranteeing dense sampling in reasonable times.

To evaluate the performance of a clustering model (i.e.,
parameter choice), a range of metrics are used, including both
clustering validation metrics (such as NMI, AMI, and ARI) and
classification metrics (such as recall, precision, accuracy, bal-
anced accuracy, and MCC). The best-performing model is deter-
mined by selecting the model with the highest score across these
metrics. Since all of these metrics report on slightly different
model summaries, some scores might show large outlying (either
abnormally high or low scores) values. To remove their influ-
ence, the best parameter choice is determined as maximizing the
median across these eight metrics.

While we determine optimal parameters on the “open clus-
ter sample” (see Sect. 4.2.1) by simply running the grid search,
the “compact cluster sample” (see Sect. 4.2.2) is a realization
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of a random effects model, making the model parameters them-
selves stochastic variables. In the latter case, we aim to find
expected values for respective clustering parameters across ten
realizations of the compact cluster sample. Optimal parametriza-
tion is expected to fluctuate between data realizations. However,
the compact cluster sample is a single cluster region to which a
unique parametrization should be applied. Thus, after searching
optimal parameter sets across the ten individual data samples, we
took the median (to reduce the effect ) of the resulting parameters
and reran the algorithm on every sample to obtain the clustering
score reported in Table 2.

In the following subsections, we describe algorithm-specific
parameter choices of the employed grid search. We also search
optimal values for each algorithm for the velocity scaling factor.
We adopt values discussed in Appendix B.3.

DBSCAN

DBSCAN has two main parameters, epsilon and
min_samples. The parameter epsilon describes a neigh-
borhood radius; in particular, it is the maximum distance within
which two samples are considered neighbors. The parame-
ter min_samples denotes the minimum number of samples
required in an epsilon-neighborhood to be considered a cluster
(or specifically a core point that seeds a cluster).

Since we normalize the velocities to the spatial subspace
XYZ we can treat epsilon as a distance in parsecs. Together
with the given minimum number of points, it defines a minimum
density needed to be considered a cluster. We search for optimal
results within a range of epsilon ∈ [2, 25] pc with a step size
of 0.5 pc. At the same time, we vary the minimum number of
samples in the following range: min_samples ∈ [4, 40] with a
step size of 2.

We find optimal parameters for the open cluster sample to
be (epsilon, min_samples, cv) = (9.5, 6, 5.95). For the com-
pact cluster sample, we find an optimal solution with (epsilon,
min_samples, cv) = (9.0, 20, 5.95)

HDBSCAN

HDBSCAN has three main parameters, min_cluster_size,
min_samples, and cluster_selection_method. Intuitively,
min_cluster_size determines the smallest cluster sizes that
HDBSCAN considers. Which points are still associated with
a cluster is determined by min_samples. By increasing
min_samples, clusters are progressively forced into denser
areas leaving more points to be declared as noise. The param-
eter cluster_selection_method determines how clusters are
selected from the cluster tree hierarchy (see Appendix B.1 for a
detailed discussion).

We search for optimal results within a range of
min_cluster_size ∈ [20, 100] with a step size of 2.
At the same time, we vary the minimum number of sam-
ples min_samples in the same range and step size while
requiring min_cluster_size ≥ min_samples39. The
selection method parameter can take the following values:
cluster_selection_method ∈ [“leaf”, “EOM”].

We find optimal parameters for the open clus-
ter sample to be (min_cluster_size, min_samples,
cluster_selection_method, cv) = (60, 60, “EOM”,
8.51). For the compact cluster sample, we find an opti-

39 This is an intrinsic requirement of the algorithm.

mal solution with (min_cluster_size, min_samples,
cluster_selection_method, cv) = (24, 18, “EOM”, 5.95).

Appendix C: Projected velocities

Fig. C.1. Tangential velocities in the vα/vδ plane, showing the theoret-
ical locations of sources with circular Galactic orbits and LSR veloci-
ties. Six different cases are shown, while each line represents sources
at all l positions. The six cases are for two different distances (100 pc,
dashed lines; 200 pc, dash-dotted lines), and for three different b posi-
tions (b = −20◦, green; b = 0◦, blue; b = 25◦, magenta). The indicated
longitude positions at l = 0◦ (box symbols) and l = 290◦ (diamond
symbols) roughly mark the eastern and western borders of Sco-Cen.
The SigMA-selected Sco-Cen members are shown as gray dots (without
stability cut). See also Fig. 13 for a separation of the clusters and for the
vα,LSR/vδ,LSR plane.

The reflex motion of the Sun influences how the observed
tangential velocities are distributed in vα/vδ space. Figure C.1
shows the theoretical positions of objects if they follow
a circular orbit around the Galactic center at given posi-
tions within the Galactic potential. The orbits are estimated
within a Milky Way potential, including a disk, bulge,
and halo component, using the python package galpy
by Bovy (2015) (galpy.potential.MWPotential2014;
galpy.potential.vcirc) and assuming the LSR velocity
from Schönrich et al. (2010). The projected motions are given
for all Galactic longitude (l) positions at two distances (d) of
100 pc and 200 pc and at three Galactic latitudes (b) of −20◦, 0◦,
and 25◦. These d and b ranges encompass the Sco-Cen region,
which reaches from about l = 0◦ to 290◦. The members of
Sco-Cen within the selected SigMA clusters are plotted as gray
dots in Fig. C.1.

Overall, the young stellar clusters in Sco-Cen seem to
roughly follow expected motions in our Galaxy, assuming they
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follow the LSR velocity. The figure additionally highlights the
issues with the projected tangential velocity plane vα/vδ, which
is a function of position in the sky and the Sun’s motion. Very
nearby stellar clusters, like in nearby young local associations,
could cover large areas in the sky and consequently also in the
tangential velocity plane while being simultaneously confined in
3D velocity space (UVW). This effect can be reduced if com-
puting the tangential velocities relative to the LSR vα,LSR/vδ,LSR,
which eliminates the influence of the reflex motion of the Sun
(see also Sect. 2 and Appendix A). A comparison of the two
velocity spaces (vα/vδ and vα,LSR/vδ,LSR) is shown in Fig. 13.

Appendix D: The Gaia DR3 CMD

In this section we first describe our procedure to estimate the
fraction of possible contaminants from older stellar populations
(or field stars) in the SigMA-selected Sco-Cen sample using the
Gaia CMD, and second, we estimate the fraction of substellar
objects (brown dwarf candidates).

D.1. Estimating the contamination from older sources

Figure 14 in Sect. 5 shows a Gaia CMD using the magni-
tudes from the Gaia DR3 passbands G, GBP, and GRP. Not
all sources have detections in all three passbands; within the
SigMA-selected Sco-Cen members, 12,724 (97%) sources have
an entry in all three passbands. The absolute magnitude MG is
calculated with the distance modulus using the inverse of the
parallax as distance. To estimate how many SigMA-selected Sco-
Cen members are consistent with the expected ages (. 20 Myr)
and which sources could be contaminants from older populations
(or field stars), we first need to apply photometric quality criteria.
Inferior photometric quality mostly affects the fainter low-mass
sources and shifts them to the left in the Gaia CMD. We used
the magnitude errors and the photometric flux excess factor C,
which are defined as follows:

Gerr = 1.0857/phot_g_mean_flux_over_error
GRP,err = 1.0857/phot_rp_mean_flux_over_error
GBP,err = 1.0857/phot_bp_mean_flux_over_error (D.1)
C = phot_bp_rp_excess_factor = (IBP + IRP)/IG

C∗ = corrected C.

The flux excess factor, C (Evans et al. 2018; Riello et al. 2021),
gives the flux excess in the GBP − GRP color relative to the G
band flux. It is recommended to use the corrected C (denoted as
C∗) as given in Riello et al. (2021), reducing color dependence.
Using these parameters, we applied the following quality criteria
to the photometry:

Gerr < 0.007 mag
GRP,err < 0.03 mag (D.2)
GBP,err < 0.15 mag
C∗ < 0.3.

These cuts reduce the number of Sco-Cen members from 12,724
with complete photometric information to 11,162 (leaving 88%),
mainly reducing the number of the fainter low-mass stars. If
not applying any quality criteria, many sources would be shifted
toward older ages only because of unreliable Gaia colors.

Figure 14 shows two isochrones. The dashed line is a 25 Myr
isochrone from Baraffe et al. (2015) (BHAC1540) for Gaia
40 http://perso.ens-lyon.fr/isabelle.baraffe/
BHAC15dir/

Table D.1. Overview of the contamination fraction from older stars as
estimated with different photometric quality criteria.

Used Cuts All Young Old

No Stability cut
In G, GBP, GRP (no cuts) 12,724 11,122 (87.4%) 1,602 (12.6%)
Eq. D.3 (looser cut) 11,906 10,700 (89.9%) 1,206 (10.1%)
Eq. D.2 (used in Fig. 14) 11,162 10,402 (93.2%) 760 (6.8%)
Eq. D.4 (stricter cut) 9,636 9,227 (95.8%) 409 (4.2%)

Stability > 11%
In G, GBP, GRP (no cuts) 11,213 10,211 (91.1%) 1,002 (8.9%)
Eq. D.3 (looser cut) 10,621 9.873 (93.0%) 748 (7.0%)
Eq. D.2 (used in Fig. 14) 10,014 9,607 (95.9%) 407 (4.1%)
Eq. D.4 (stricter cut) 8,692 8,528 (98.1%) 164 (1.9%)

Notes. In parentheses we give the fraction of young and old stellar can-
didates relative to the number of sources after the individual photomet-
ric error cuts, given in column “All.” The top four rows show the esti-
mates using sources with no stability cut, and the bottom four rows show
the estimates using a cut at stability > 11%. We stress that this is not a
generally suggested cut to get cleaner samples, since the maximum sta-
bility varies per cluster.

DR3/EDR3 passbands. The solid line is a 25 Myr isochrone from
PARSEC41 for Gaia DR3/EDR3 passbands (e.g., Bressan et al.
2012; Chen et al. 2014, 2015; Marigo et al. 2017; Riello et al.
2021), including the upper–main-sequence (UMS), which is
missing in the BHAC15 models. We used both models since
BHAC15 models deliver a better representation of low-mass
stars.

To get a measure for the contamination from older sources
(older than the expected ∼ 20 Myr), we select sources to the
left of the two 25 Myr isochrones, allowing for random scat-
ter around the 20 Myr isochrone (in particular young stars often
show higher variability than main-sequence stars). Additionally,
we did not consider sources at the UMS since there the trend
reverses (younger sources are to the left of the UMS). Hence, we
applied a cut at MG > 3 mag, only including fainter sources to
select older stellar candidates.

The combined conditions deliver 760 candidate contami-
nants (and 10,402 young Sco-Cen candidates) out of 11,162
sources with applied photometric quality criteria. This is about
6–7% possible contaminants from older populations within the
SigMA clusters. Considering the chosen borders, we stress that
this separation can only be seen as a rough estimate. In particu-
lar, we did not consider any possible contaminants in the UMS
regime, where it is more difficult to distinguish young members
from older stellar populations. Moreover, the chosen isochrone
models have intrinsic uncertainties, and any change in metallic-
ity or extinction is ignored in our test. Finally, we only examine
sources from the CMD in Fig. 14 with the applied photometric
quality criteria from Eq. (D.2). Hence, we cannot make any state-
ment for sources with inferior photometric quality, which often
suffer from higher astrometric uncertainties and which could be
shifted in the CMD space. Consequently, such sources could also
have a higher probability of having a wrong cluster membership
solely due to the generally larger scatter in various dimensions.

To better understand the influence of the quality criteria, we
repeat the selection of old star contamination with different pho-
tometric quality cuts. First, we consider the case of applying
no cuts, using the 12,724 sources with entries in all three Gaia
bands, delivering a contamination fraction from older sources of

41 http://stev.oapd.inaf.it/cgi-bin/cmd; assuming solar
metallicity (metal fraction z = 0.0152) and no extinction.
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about 13%. Next, we applied somewhat looser and also stricter
quality criteria than given in Eq. (D.2) as follows, first showing
the looser cuts (D.3) and then the stricter cuts (D.4):

Gerr < 0.01 mag
GRP,err < 0.045 mag (D.3)
GBP,err < 0.25 mag
C∗ < 0.5

Gerr < 0.004 mag
GRP,err < 0.015 mag (D.4)
GBP,err < 0.05 mag
C∗ < 0.3.

With the looser cuts, we get a contamination fraction of about
10%, and with the stricter cuts about 4% (see overview in
Table D.1). It gets clear that the fraction of sources to the left of
the chosen isochrones decreases significantly (from about 13%
to 4%) when using superior photometry, which indicates that
many sources indeed get erroneously shifted to older ages when
not considering the influence of photometric uncertainties. In
conclusion, we estimate the contamination fraction from older
populations or field stars to be between 4–10%.

Additionally, we investigate the influence of the member-
ship stability as delivered by the SigMA algorithm (Sect. 3.6).
Figure 8 shows the influence of different stability cuts on the
“old star contamination fraction” when using the quality criteria
from Eq. (D.2). It can be seen that for low stability (.11%) there
is also a significant increase in the contamination fraction. When
only using sources with stability > 11%, we would get a old star
contamination fraction in the range of about 2–9% for the cases
of strict to no photometric cuts (see Table D.1). Hence, 2–4% can
be considered as the lower limit for contamination from older
stellar populations (or field stars), while about 10% is likely
the upper limit. We conclude that the majority of the SigMA-
selected Sco-Cen members (likely more than 90%) are sources
with young Sco-Cen–typical ages and therefore likely not con-
taminants from interloping older populations or field stars. The
stability can be used to get more reliable members, while the
stability cut needs to be decided individually per cluster.

D.2. Estimating the fraction of substellar sources

To get an estimate of substellar sources in our sample (brown
dwarf candidates), we used a 0.08 M� isomass line in Fig. 14
(right panel), which is extracted from BHAC15 models using
ages from 0.5–30 Myr. We select sources below 0.08 M�, which
is defined as the approximate hydrogen-burning limit (e.g.,
Baraffe et al. 1998; Burrows et al. 2001; Freytag et al. 2010,
2012; Dieterich et al. 2014). The uncertainties at the low-mass
regime make this selection only a rough estimate, in combina-
tion with the uncertainties of the stellar models (e.g., unknown

metallicity, neglected extinction, different models give differ-
ent results). Additionally, all the uncertainties mentioned above
in Sect. D.1 (e.g., chosen error or stability cuts) should be
considered.

Using a cut 0.08 M� and the quality criteria from Eq. (D.2)
we find that there are 1946 out of 10,402 (18.7%) potential sub-
stellar sources when considering only the younger sources from
the middle panel in Fig. 14. This selection indicates a fraction
of substellar objects of about 19% within the SigMA clusters.
If applying less strict error cuts (no cuts or Eq. (D.3)), the frac-
tion stays at about 19%, and if applying more strict error cuts
(Eq. (D.4)) the fraction decreases to about 12%. This is expected
since more conservative photometric error cuts affect in particu-
lar faint sources. Changing the stability criteria does not influ-
ence these different fractions significantly, since sources both
in the stellar and substellar regime seem to be affected almost
equally. Concluding, we estimate that there are about 19% of
brown dwarf candidates in the SigMA-selected Sco-Cen sam-
ple, which can be considered as an upper limit (if correcting for
extinction would likely deliver a lower fraction).

Appendix E: Auxiliary tables and figures

In Table E.1 we give an overview of the contents of the source
catalog containing all Sco-Cen members as selected in this work,
including labels for cluster membership. The full version of the
table is available online as a machine-readable version.

We provide three additional tables, giving an overview of
the literature comparisons between the SigMA clusters and other
Sco-Cen samples. In Table E.2 we compare to Damiani et al.
(2019) and Žerjal et al. (2023), in Table E.3 to Kerr et al. (2021),
and in Table E.4 we compare to Squicciarini et al. (2021),
Miret-Roig et al. (2022a), and Briceño-Morales & Chanamé
(2023). More details on the comparisons can be found in
Sect. 5.2.

Finally, we provide additional figures of the position and
velocity spaces of the individual 37 SigMA clusters. This allows
a better appreciation of the individual cluster source distribution
in each parameter space. The Figs. E.1–E.5 are constructed as
follows. The cluster names are given in the left panel (l, b panel)
of each row. Each column shows one of the six different param-
eter spaces for one cluster. The parameter spaces are the same
as in Figs. 10–13, namely l versus b (deg), X versus Y (pc), X
versus Z (pc), Y versus Z (pc), vα versus vδ (km s−1), and vα,LS R
versus vδ,LS R (km s−1). These axes labels are given at the top of
each column. We note that Col. 5 (tangential velocities) shows
a larger velocity range than Col. 6 (tangential velocities rela-
tive to the LSR), where the clusters actually occupy a smaller
velocity space and hence show a smaller velocity dispersion. All
SigMA-selected Sco-Cen members are plotted in gray in all pan-
els and the given cluster is over-plotted with red dots. See also
Figs. 10–13 for an alternative view of the 37 SigMA clusters, and
the interactive 2D and 3D versions online.
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Table E.1. Catalog of the 13,103 Sco-Cen members labeled for cluster membership as identified with SigMA.

Column name Unit Column description

dr3_source_id The source ID from Gaia DR3.
SigMA SigMA membership label for each source, as defined in Table 3.
stability Membership stability of each source between 0–100%
distance pc Distance derived from inverse of the parallax
e_d_upper pc Upper 1σ distance uncertainty determined from the 68.3 percentile of the sampled d distribution
e_d_lower pc Lower 1σ distance uncertainty determined from the 68.3 percentile of the sampled d distribution
X pc Heliocentric Galactic Cartesian coordinate, X-axis grows positive toward the Galactic center
Y pc Heliocentric Galactic Cartesian coordinate, Y-axis grows positive in direction of Galactic rotation
Z pc Heliocentric Galactic Cartesian coordinate, Z-axis grows positive toward the Galactic North-pole
e_X_upper pc Upper 1σ X uncertainty determined from the 68.3 percentile of the sampled X distribution
e_Y_upper pc Upper 1σ Y uncertainty determined from the 68.3 percentile of the sampled Y distribution
e_Z_upper pc Upper 1σ Z uncertainty determined from the 68.3 percentile of the sampled Z distribution
e_X_lower pc Lower 1σ X uncertainty determined from the 68.3 percentile of the sampled X distribution
e_Y_lower pc Lower 1σ Y uncertainty determined from the 68.3 percentile of the sampled Y distribution
e_Z_lower pc Lower 1σ Z uncertainty determined from the 68.3 percentile of the sampled Z distribution
v_alpha km s−1 Tangential velocity in the direction of α
v_delta km s−1 Tangential velocity in the direction of δ
e_v_alpha_upper km s−1 Upper 1σ vα uncertainty determined from the 68.3 percentile of the sampled vα distribution
e_v_delta_upper km s−1 Upper 1σ vδ uncertainty determined from the 68.3 percentile of the sampled vδ distribution
e_v_alpha_lower km s−1 Lower 1σ vα uncertainty determined from the 68.3 percentile of the sampled vα distribution
e_v_delta_lower km s−1 Lower 1σ vδ uncertainty determined from the 68.3 percentile of the sampled vδ distribution
v_alpha_LSR km s−1 Tangential velocity in the direction of α and relative to the LSR
v_delta_LSR km s−1 Tangential velocity in the direction of δ and relative to the LSR
v_ERV km s−1 Estimated radial velocity, given as v̂r in Sect. 3.5.2

Notes. The full machine-readable version of the catalog is available online, while a column overview is given here. We list all relevant derived
parameters. Original Gaia DR3 parameters can be queried from the Gaia Archive by using the dr3_source_id.
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Table E.2. Comparing the SigMA clusters with stellar group selections from Damiani et al. (2019) and from Žerjal et al. (2023).

SigMA Name (SigMA) Nra Matches with DDP19b Matches with ZIC23c

1 rho Oph 535 US-f(3)US-n(316)US-D2(68)N(20) C-USco(405)E-USco-multi(13)
2 nu Sco 150 US-n(62)US-D2(65)N(1) C-USco(127)E-USco-multi(1)
3 delta Sco 691 US-f(33)US-n(74)D1(88)D2a(8)D2b(2)US-D2(387)N(6) G-UCL-East(3)C-USco(489)E-USco-multi(24)
4 beta Sco 285 US-f(58)US-n(17)US-D2(152)N(8) C-USco(189)E-USco-multi(19)
5 sigma Sco 544 US-f(180)US-n(3)D1(14)D2a(3)US-D2(227)N(7) G-UCL-East(2)C-USco(105)E-USco-multi(184)
6 Antares 502 US-f(67)US-n(40)D1(19)D2a(5)US-D2(249)N(29) C-USco(78)E-USco-multi(252)
7 rho Sco 240 US-f(14)US-n(2)D1(159)D2a(3)US-D2(10)N(15) G-UCL-East(48)C-USco(1)E-USco-multi(7)
8 Sco-Body 373 D1(2)D2a(221)US-D2(34)N(7) E-USco-multi(291)
9 US-fg 276 D1(188)D2b(1)US-D2(7)N(12) G-UCL-East(16)E-USco-multi(29)
10 V1062-Sco 1029 UCL-1(554)D1(11)D2a(222)D2b(4)N(10) D-UCL-V1062-Sco(499)F-UCL-V1062-Sco(228)G-UCL-East
11 mu Sco 54 UCL-1(36)D1(2)D2a(5) D-UCL-V1062-Sco(7)F-UCL-V1062-Sco(30)
12 Libra-S 71 D1(1)D2a(8)D2b(13)US-D2(32) E-USco-multi(4)
13 Lup 1-4 226 LupIII(67)D2a(47)D2b(65)N(4) G-UCL-East(6)T-UCL-West(1)E-USco-multi(109)
14 eta Lup 769 UCL-3(3)D1(549)D2a(43)D2b(10)US-D2(1)N(14) G-UCL-East(419)E-USco-multi(15)
15 phi Lup 1114 UCL-3(48)D1(627)D2a(62)D2b(148)N(38) G-UCL-East(652)T-UCL-West(28)E-USco-multi(17)
16 Norma-N 42 D1(1)N(6)
17 e Lup 516 D1(319)D2a(18)D2b(80)N(5) G-UCL-East(349)T-UCL-West(15)
18 UPK 606 131 UCL-2(50)D1(2)D2b(57)N(1) G-UCL-East(54)T-UCL-West(9)
19 rho Lup 246 D1(17)D2b(189)N(2) A-LCC-North (45)G-UCL-East(10)T-UCL-West(110)
20 nu Cen 1737 UCL-2(2)D1(54)D2a(12)D2b(1270)US-D2(3)N(50) A-LCC-North (70)G-UCL-East(116)T-UCL-West(790)E-US
21 sig Cen 1805 LCC-1(1)D1(45)D2b(1384)N(43) A-LCC-North (1077)U-LCC-South(56)T-UCL-West(66)
22 Acrux 394 LCC-1(89)D1(11)D2b(242)N(4) A-LCC-North (25)U-LCC-South(316)
23 Musca-fg 95 D2b(35)N(2) U-LCC-South(76)
24 eps Cham 39 U-LCC-South(25)
25 eta Cham 30 U-LCC-South(3)
26 B59 32 D2a(1)N(20) E-USco-multi(2)
27 Pipe-North 42 E-USco-multi(38)
28 tet Oph 98 D2a(37)US-D2(6)N(2) E-USco-multi(87)
29 CrA-Main 96 E-USco-multi(2)
31 Sco-Sting 132 D1(22)D2a(1)
32 Cen-Far 99 D2b(41)N(1)
35 L134/L183 24 E-USco-multi(16)

Notes. Only those SigMA clusters that have cross-matches with either of the two literature samples are given here. aNumber of sources from this
work, for a direct comparison with the number of cross-matches given in brackets in Cols. 4–5. bThe DPP19 group shortcuts are given for eight
compact clusterings (UCL-1, UCL-2, UCL-3, Lupus 3, LCC-1, US-far, US-near), four diffuse populations (D1, D2a, D2b, US-D2), and sources
that have not been assigned to any of these groups (N). The number in brackets gives the number of matches with the respective SigMA cluster.
See details in Sect. 5.2.1. cZIC23 report eight subgroups in Sco-Cen (C, E, D, F, G, T, A, U) and two additional older groups (H, I; IC 2602 and
Platais 8), while there are no matches of H or I with the 37 SigMA clusters. Again, the number of matches is given in brackets. The groups contain
the following numbers of sources in ZIC23: C-USco 1432, E-USco-multi 1483, D-UCL-V1062-Sco 506, F-UCL-V1062-Sco 273, G-UCL-East
1713, T-UCL-West 1057, A-LCC-North 1234, and U-LCC-South 487. See further details in Sect. 5.2.5.
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Table E.3. Comparing the SigMA clusters with Kerr et al. (2021) clusters toward Sco-Cen.

SigMA Name (SigMA) Nra TLCb EOMc LEAFd Name (KRK21)e

1 rho Oph/L1688 535 22(308) 17(272) I(109) US-I-rho Oph
2 nu Sco 150 22(91) 17(90) E(54) US-E
3 delta Sco 691 22(414) 17(378) F(1)H(102)I(1) US-H
4 beta Sco 285 22(167) 17(137) G(29) US-G
5 sigma Sco 544 22(296) 17(248) A(1)C(17)D(22) US-C/D
6 Antares 502 22(292) 17(239) A(1)B(11)C(1)F(24) US-B/F
7 rho Sco 240 22(128) 17(64) A(9) US-A
8 Scorpio-Body 373 22(193) 16(12)17(45) EOM-16/US
9 US-foreground 276 22(111) 13(30) EOM-13
10 V1062-Sco 1029 22(503) 14(20)15(347) LowerSco/EOM-14
11 mu Sco 54 22(28) 15(23) LowerSco
12 Libra-South 71 22(23)
13 Lupus-1-4 226 22(143) 12(102) A(46)B(14) Lupus-IV/III
14 eta Lup 769 22(411) 9(15)22(102)23(6) EOM-9/22/23
15 phi Lup 1114 22(391) 17(4)19(10)23(6) EOM-19/23
16 Norma-North 42 22(4)
17 e Lup 516 22(257) 11(1)20(76)21(8) EOM-20
18 UPK606 131 21(1)22(53) 11(32) UPK606
19 rho Lup 246 22(123) 21(2)25(10) EOM-25
20 nu Cen 1737 22(573) 11(3)21(2)24(108)26(14)27(2) EOM-24
21 sig Cen 1805 22(987) 25(1)26(26)27(421) C(4)D(12)E(48) EOM-26/LCC-D/E
22 Acrux 394 22(258) 27(208) B(1)C(96) LCC-C-Crux S
23 Musca-foreground 95 22(65) 27(46) B(16) LCC-B
24 eps Cham 39 22(23) 27(20) A(17) LCC-A-eps Cha
25 eta Cham 30 22(18) 18(17) eta Cha
26 B59 32 22(14) 6(13) Pipe
27 Pipe-North 42 22(19)
28 tet Oph 98 22(49) 10(28) Theia67
29 CrA-Main 96 22(53) 8(52) CrA
30 CrA-North 351 22(207) 7(1)8(195) CrA
31 Scorpio-Sting 132 22(62) 7(11) EOM-7
32 Centaurus-Far 99 21(36) 3(30) Cen-South
33 Chamaeleon-1 192 21(101) 1(101) Cha-1
34 Chamaeleon-2 54 21(30) 2(30) Cha-2
35 L134/L183 24 22(6)
36 Oph Southeast 61 4(20) Oph Southeast

Notes. Only those SigMA groups that have matches with KRK21 are given here, while Oph-North-Far is the only SigMA cluster without matches.
aNumber of sources from this work, for a direct comparison with the number of cross-matches as given in brackets in Cols. 4–6. bCol. 4 lists the
TLC group labels if there are matches with SigMA, with the number of cross-matches in brackets. There have been only matches with the TLC
groups 4, 21, and 22. cCol. 5 lists the EOM group labels if there are matches with SigMA, with the number of cross-matches in brackets, while
each EOM represents a subclustering within a lower level TLC group. dThe letters in Col. 6 correspond to LEAF subgroups, with the number of
cross-matches in brackets, while a LEAF group represents a subclustering within a lower-level EOM group. Leaves only exist for the EOM groups
12 (Lupus), 17 (US), and 27 (LCC). eGroup names from KRK21, if there is a significant overlap with SigMA. Only the (sub)group with the most
significant number of cross-matches is given (in a few cases more than one), as apparent from the numbers in brackets in Cols. 5 & 6. See more
details in Sect. 5.2.2.
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Table E.4. Comparing the SigMA clusters with stellar group selections from Squicciarini et al. (2021), Miret-Roig et al. (2022a), and
Briceño-Morales & Chanamé (2023).

SigMA Name (SigMA) Nra Matches with SGB21b Matches with MR22c Matches with BMC23d

1 ρ Oph/L1688 535 G1(428)G2(2)G3(1)G4(1)G8(2)D(51) αSco(3)δSco(9)νSco(1)σSco(67)ρOph(370) D(184)ρOph(225)νSco(1)αSco(1)
2 ν Sco 150 G1(1)G2(110)G6(10)D(23) βSco(2)δSco(2)νSco(110)σSco(22) D(28)ωSco(6)νSco(84)βSco(3)
3 δ Sco 691 G1(19)G2(2)G3(390)G4(9) αSco(27)βSco(8)δSco(410)νSco(29) D(398)ωSco(59)νSco(22)δSco(66)

G5(50)G6(2)G7(1)G8(2)D(136) πSco(38)σSco(90)ρOph(6) αSco(1)βSco(1)
4 β Sco 285 G1(1)G4(141)G5(11)G6(46)D(57) αSco(2)βSco(169)σSco(70) D(86)αSco(26)βSco(107)
5 σ Sco 544 G1(2)G4(2)G5(104)G8(3)D(377) αSco(268)δSco(3)πSco(7)σSco(163) D(254)αSco(192)
6 Antares 502 G1(13)G3(5)G7(44)G8(33)D(313) αSco(290)πSco(29)σSco(52)ρOph(37) D(322)ρOph(29)ωSco(1)νSco(1)

αSco(5)UCL(2)
7 ρ Sco 240 D(168) αSco(3)πSco(180) D(172)πSco(2)ρOph(7)αSco(2)
8 Scorpio-Body 373 αSco(2)σSco(2) D(81)UCL(3)
9 US-foreground 276 D(13) αSco(1)πSco(194) D(102)πSco(96)
10 V1062-Sco 1029 D(2)
12 Libra-South 71 σSco(1) D(24)
13 Lupus 1-4 226 D(7)
14 η Lup 769 πSco(12) D(55)UCL(47)
15 φ Lup 1114 D(2) πSco(3) D(9)
20 ν Cen 1737 σSco(1)
28 θ Oph 98 D(7)

Notes. Only those SigMA groups that have cross-matches with one of the three literature samples are given here. aNumber of sources from this
work, for a direct comparison with the number of matches as given in brackets in Cols. 4–6. bThe SGB21 groups (G) are numbered from 1 to 8,
and their diffuse population is given with D. The number of cross-matches is given in brackets. The eight groups in SGB21 are associated with
the brightest star in each group as follows: G1–i Sco; G2–ν Sco B; G3–b Sco; G4–HD 144273; G5–HIP 77900; G6–HIP 78968; G7–HIP 79910;
G8–HD 146467. See details in Sect. 5.2.6. cComparison to the seven groups in US as identified by MR22. Again, the number of cross-matches
is given in brackets. See details in Sect. 5.2.7. cComparison to the eight clusters and one diffuse population (D) in US as identified by BMC23.
Again, the number of cross-matches is given in brackets. See details in Sect. 5.2.8.
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Fig. E.1. Six parameter spaces, with the individual clusters highlighted in red. Shown are clusters SigMA 1–8 (part of US). The gray background
sources are all SigMA-selected Sco-Cen members. Cluster names are given in the left panels of each row. The used xy-axes are given as titles at
the top of each column. Tick labels are only given in the bottom row. Note that the vLSR space shows a smaller velocity range compared to the
tangential velocity space in Col. 5 and hence a lower velocity dispersion. See also Figs. 10–13 and the main text for more details.
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Fig. E.2. Same as Fig. E.1, but for clusters SigMA 9–16 (part of US and UCL).
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Fig. E.3. Same as Fig. E.1, but for clusters SigMA 17–24 (part of UCL and LCC).
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Fig. E.4. Same as Fig. E.1, but for clusters SigMA 25–32 (part of LCC, Pipe, CrA, and Cham).
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Fig. E.5. Same as Fig. E.1, but for clusters SigMA 33–37 (part of Cham and NE).
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