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ABSTRACT

Context. Nearby stellar streams carry unique information on the dynamical evolution and disruption of stellar systems in the Galaxy,
the mass distribution in the disk, and they provide unique targets for planet formation and evolution studies. Recently, Meingast 1, a
120◦ stellar stream with a length of at least 400 pc, was dicovered.
Aims. We aim to revisit the Meingast 1 stream to search for new members within its currently known 400 pc extent, using Gaia DR2
data and an innovative machine learning approach.
Methods. We used a bagging classifier of one-class support vector machines with Gaia DR2 data to perform a 5D search (positions and
proper motions) for new stream members. The ensemble was created by randomly sampling 2.4 million hyper-parameter realizations
admitting classifiers that fulfill a set of prior assumptions. We used the variable prediction frequency resulting from the multitude of
classifiers to estimate a stream membership criterion, which we used to select high-fidelity sources. We used the HR diagram and the
Cartesian velocity distribution as test and validation tools.
Results. We find about 2000 stream members with high fidelity, or about an order of magnitude more than previously known, unveiling
the stream’s population across the entire stellar mass spectrum, from B stars to M stars, including white dwarfs. We find that, apart
from being slightly more metal poor, the HRD of the stream is indistinguishable from that of the Pleiades cluster. For the mass range
at which we are mostly complete, ∼0.2 M� < M <∼ 4 M�, we find a normal IMF, allowing us to estimate the total mass of stream
to be about 2000 M�, making this relatively young stream by far the most massive one known. In addition, we identify several white
dwarfs as potential stream members.
Conclusions. The nearby Meingast 1 stream, due to its richness, age, and distance, is a new fundamental laboratory for star and planet
formation and evolution studies for the poorly studied and gravitationally unbound star formation mode. We also demonstrate that
one-class support vector machines can be effectively used to unveil the full stellar populations of nearby stellar systems with Gaia
data.

Key words. methods: statistical – open clusters and associations: individual: Meingast 1 – stars: luminosity function, mass function –
stars: massive – stars: low-mass – white dwarfs

1. Introduction

Coherently moving groups of stars in the Milky Way are
unique laboratories where we can coherently study a large

? The full source catalog described in Table G.1 is only avail-
able at the CDS via anonymous ftp to cdsarc.u-strasbg.fr
(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/
cat/J/A+A/639/A64
?? In our original discovery paper, we did not name the stream. The
authors of the first follow-up paper (Curtis et al. 2019) contacted us re-
garding a name for the structure but did not agree with our proposed name
and decided on their own to name the system the Pisces-Eridanus stream.
Their chosen name, however, not only does not capture the true size of the
stream (the stream stretches across at least 10 constellations and likely
extends beyond these), it is ambiguous as it can lead to confusion with the
Pisces moving group (Binks et al. 2018). In general, given the number
of new streams being found by Gaia and the finite number of constel-
lations, it seems appropriate to move away from using constellations to
name streams (e.g., Ibata et al. 2019). An unambiguous remedy to this
particular situation is to name the stream after the original discoverer,
which we do in this paper, naming the structure Meingast 1.

variety of astrophysical processes. For instance, the similar
birth conditions in nearby moving groups have provided much
insight into individual stellar properties (e.g., Torres et al. 2008;
Gagné et al. 2014; Riedel et al. 2017, and references therein).
Moreover, while older stellar systems experience mass loss
due to the gravitational interaction with the Galaxy’s grav-
itational potential (e.g., Meingast & Alves 2019; Röser et al.
2019), young co-moving groups can give us important clues
on the governing star formation processes in the Milky
Way.

Recently, Meingast et al. (2019), the second installment in
this series (hereinafter referred to as Paper II), discovered a 120◦
stellar stream that is currently traversing the immediate solar
neighborhood at a distance of only ∼100 pc. For this paper, the
authors determined the age of the system to be 1 Gyr. Their
assumption was mostly based on the presence of a single star
in their selection, namely the subgiant 42 Ceti. Shortly after the
stream’s discovery, Curtis et al. (2019) determined stellar rota-
tion periods of stream members to be very similar to stars in the
Pleiades. Their application of gyrochronolgy thus sets the age of
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the stream at close to 120 Myr, implying that the star 42 Ceti is
likely an unfortunate interloper.

The search criteria in Paper II were based on the 3D space
velocities in a cylindrical coordinate frame derived from astro-
metric measurements provided with the second Gaia data release
(Gaia DR2; Gaia Collaboration 2016, 2018c). While space
velocities provide a robust estimate on membership, evaluat-
ing 3D motions of stars requires radial velocity measurements.
This requirement substantially limits the identification of mem-
bers to a small subset of Gaia DR2, specifically to stars with
G . 13 mag, which in the case of Meingast 1 translate to stellar
masses between ∼0.5 and 1.5 M�.

The goal of this paper is to unveil the stellar population of
the Meingast 1 stream, from B stars down to mid-M stars, or
the completeness limit of the Gaia DR2 data. To this end, we
applied state-of-the-art machine learning tools, where we used
the previously identified members as a training set. The struc-
ture of this paper is as follows: in Sect. 2, we present the data
used for the analysis. Section 3 summarizes the method used to
select potential stream member sources from the Gaia DR2 data
set. Finally, in Sect. 4, we present a final high-fidelity source cat-
alog on which we determine the age and mass of the Meingast 1
stream1.

2. Data

For the analysis, we used the 5D position (α, δ, $) and velocity
(µα, µδ) information, provided by Gaia DR2. Following the data
selection in Paper II, we preferred distance estimates provided
by Bailer-Jones et al. (2018). The distance limit of the stellar
sample is kept at ≤300 pc in accordance with Paper II. This is
motivated by the choice of our classifier, which predicts member
stars within the limits of the previously determined extent of the
stream. Furthermore, the subsequently described method works
independently from quality criteria. Therefore, quality filters are
only applied for visualisation purposes. This selection results in
a data set of 18 692 951 total stars.

For Paper II, the sources were extracted in a 6D parame-
ter space spanned by three spatial (X, Y , Z) and three velocity
dimensions (vr, vφ, vz). Specifically, the velocities were repre-
sented in a galactocentric cylindrical coordinate system to bet-
ter represent the bulk motion stars. Consequently, the source
identification in Paper II depended on radial velocity measure-
ments, which are scarce in Gaia DR2. Within the search region
of 300 pc, about 95% of all sources in the catalog were, there-
fore, not taken into account in Paper II due to missing radial
velocity data.

3. Member selection

As mentioned above, the bulk of Gaia DR2 catalog sources were
not used in the original member identification of the stream
in Paper II. Omitting the radial velocity component yields a
much more complete source list, but at the same time limits any
analysis to projected tangential velocities given by the proper
motion measurements. While members of spatially confined star
clusters can be identified reliably in proper motion space, the
recently discovered stream encompasses at least 120◦ on sky.
This large extent introduces significant projection effects in tan-
gential velocities, posing a nontrivial problem for member iden-
tification in 5D.
1 We acknowledge the simultaneous publication by Röser & Schilbach
(2020), who have also studied member stars of the Meingast 1 stream.

3.1. Supervised member selection

To avoid the difficult task of clustering in the 5D posi-
tion and proper motion space, we pursued a supervised
approach based on one-class support vector machines
(OCSVM; Schölkopf et al. 2001). Instead of finding a decision
boundary between distinct groups in the training sample like a
typical SVM (Cortes & Vapnik 1995), an OCSVM constructs
a decision surface that attains a maximum separation between
the training samples and the origin. Consequently, the algorithm
infers the properties of the input samples by enclosing the
support of its joint distribution with a hyper surface during
the training process. Depending on the position of unseen data
points2 to this surface, a trained predictor acts as a binary
function which groups new example points as either resembling
the previously seen training data or not. We aim to estimate the
extent of the stellar stream by using the OCSVM algorithm and
the already classified sources from Paper II as a training set.
Subsequently, we predict the membership of unseen stars to the
stream within a 300 pc sphere around the Sun (see Sect. 2). In
order to find a model that is capable of providing a physically
meaningful characterization of the stellar stream in the 5D fea-
ture space, the corresponding hyper-parameters of the OCSVM
classifier have to be set sensibly.

3.2. Parameter tuning

We made use of the libsvm (Chang & Lin 2011) OCSVM imple-
mentation, which features two main hyper-parameters for the
RBF-kernel3, γ and ν. The parameter γ defines a region of influ-
ence of the support vectors selected by the model. The variable
ν controls the fraction of possible outliers as well as the fraction
of support vectors. Thus, γ and ν are crucial hyper-parameters
that define the shape of the enveloping hull.

Additionally, these parameters, and subsequently the classi-
fier shape, depend on the input variable range. Since the parame-
ter γ describes a support vector region of influence, different fea-
ture ranges lead to a varying model flexibility within each input
variable. To mitigate an asymmetric feature weighting, a com-
mon approach is to standardize each input variable to a common
variance by dividing each feature by its standard deviation. How-
ever, as we are dealing with a combined feature space of posi-
tion and proper motion information a certain weighting towards
one of the two feature spaces might be beneficial to properly
characterize the joint probability of stream members. Conse-
quently, after scaling the features to unit variance, we added an
additional hyper-parameter: cx/cv. This parameter describes the
scaling fraction between positional and proper motion features.
When cx/cv = 1 the variance in both feature spaces is the same.
In practice, we set cv = 1 and vary cx within a certain range.

As we chose a classifier via a set of hyper-parameters, we
have to be aware of existing contamination in the training set
(estimated to amount to a few percent in Paper II). Additional
selection biases caused by the original clustering and parameter
choice that influence the final obtained stream selection should
be considered. Therefore, only crude estimates about the true
joint distribution of the sources in 5D are possible. Nevertheless,

2 Stars in the data set are represented as points in a 5D space with three
position axes and two proper motion axes constituting the so-called fea-
ture space. Thus, in a machine learning context, we refer to stars in the
data set as points in a feature space.
3 We conclude from extensive hyper-parameter searches that the RBF
kernel always outperformed the alternative options. Hence we omit the
description of other kernel types in this section.
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we have information about the resulting classifier shape, which
limits the space of possible solutions. Firstly, based on the
number of missing radial velocity measurements, we estimate
that the total number of member stars should roughly increase
twenty-fold. Secondly, due to a lack of a better description we
estimate that the true extent is comparable to the original selec-
tion in Paper II, which found that the stream is roughly prolate
spheroidal with a length of about 400 pc and an equatorial diam-
eter of about 50 pc.

A trained classifier has to be able to capture these prior
assumptions. Therefore, we used the above mentioned character-
istics to eliminate predictions that seem unfit to describe the stel-
lar stream in 5D. Since we cannot infer the true joint distribution
from the available stream members, and our prior assumptions
entail some allowable margin of variation, the model param-
eters cannot be tuned to optimal values. Instead, we aggre-
gated the predictions of multiple models that conform to our
prior assumptions into an ensemble of OCSVMs. This proce-
dure is referred to as bootstrap aggregating, also known as bag-
ging (Breiman 1996). A benefit of using multiple aggregated
classifiers, in comparison to one single model, is an improve-
ment in prediction stability. Due to its variance-reducing ability,
bagging has been successfully applied, especially to noise-prone
classifiers, whose predictions vary significantly with small vari-
ations in the training data. In Grandvalet (2004), the author sug-
gests that bagging systematically reduces the influence of outlier
samples in the training data. Furthermore, by bundling together
multiple models, a notion of stability for each star is obtained
as different regions of the 5D training space have varying pre-
diction frequencies. Ideally, the ensemble of classifiers has a
higher prediction frequency towards the center region of the
stellar stream (in 5D) where sources are less likely to be ran-
domly selected field stars. Bagging, therefore, automatically cre-
ates a hierarchy from more robust to less robust stream mem-
bers, which reduces prediction variance compared to a single
classifier.

A schematic illustration of a small ensemble classifier is
shown in Fig. 1. The black scatter points represent the train-
ing set, whereas the colored shapes depict the bounding surfaces
of individual OCSVM classifiers trained with different sets of
hyper-parameters. The unification of multiple classifiers results
in an ensemble classifier where overlapping bounding regions
result in different levels of prediction frequency.

The final bagging predictor is obtained in a two step pro-
cess: Firstly, the actual training phase and, secondly, the val-
idation phase, which rejects models that do not represent our
expectations well. In the learning phase (see Appendix A for
more details) the model is trained using ten-fold cross validation
on a random set of hyper-parameters (γi, νi, (cx/cv)i). Before
deploying the classifier on the full data set, we filtered out mod-
els below a mean accuracy score of 0.5, or a standard deviation
above 0.15 across the hold-out sets. Models passing this filter
criterion enter the validation phase, which assess the classifiers
capability of capturing our prior assumptions about the distribu-
tion and quantity of predicted sources. We require the model to
comply with the following criteria. Firstly, the number of pre-
dicted stream members Ns must not exceed a physically sensi-
ble range, which is limited to Ns ∈ [500, 5000]. Secondly, the
extent of the predicted stream members in position and proper
motion space must be similar to the original ones. Thirdly, the
cylindrical velocity distribution of the stream members must not
deviate too much from the training sample distribution. For a
full description on the implementation of these three validation
criteria, see Appendix B.
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c)
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0
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Fig. 1. Schematic figure illustrating the effect of different hyper-
parameters on the classifier shape in the Galactic X–Y plane. Black
points represent the training set, whereas the colored shapes depict the
bounding surfaces of individual OCSVM classifiers trained with a dif-
ferent set of hyper-parameters. The unification of multiple classifiers
results in an ensemble classifier where overlapping bounding regions
result in different levels of stability.

Since we cannot formulate an exact objective function to
be minimized, we did not converge to a single, optimal hyper-
parameter selection. Instead, the models were assessed as either
plausible candidates, which capture out prior assumptions about
the distribution of the predicted sources, or not. Therefore, for
small ensemble classifiers with only a few models, the prediction
depends on the sampling strategy in hyper-parameter space. To
reduce the dependency on the search strategy, we iterate through
2.4 million random realizations of (γi, νi, (cx/cv)i) within their
respective range in order to converge to a stable solution. Alto-
gether, the final classifier ensemble consists of a total of 8515
classifiers, which have passed the validation steps. Figure C.1
shows the distribution of accepted models with respect to the
hyper-parameters ν, γ, and cx/cv. The software used to train the
ensemble classifier is publicly available4.

3.3. Limitations and caveats

Any supervised model based on OCSVMs is limited by the pro-
vided training data, because the shape of the decision surface is
determined by the input training set. As suggested in Paper II,
the stream’s extent might potentially be much larger due to sen-
sitivity limitations. The method used in this paper is not able
to infer the stream membership of stars outside the constructed
decision boundary. Finding externally located stream members
would require, for example, a transition to unsupervised meth-
ods, which are not limited by a fixed training set.

Additionally, the constructed decision boundary depends
heavily on the outermost points in the training sample as they
are more likely to act as support vectors for the decision surface.
As the density of points decreases towards these outer regions
(in 5D), the decision boundary depends on random fluctuations
of these border points present in the training set. Furthermore,
we suspect the fraction of contaminants in stream member stars

4 https://github.com/ratzenboe/uncover and http://
uncover.cs.univie.ac.at/
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per unit volume increase towards border regions. Thus, outliers
in the border region have an increasing chance of being a sup-
port vector defining the shape of the decision surface. These
effects, however, are somewhat mitigated by the choice of bag-
ging multiple predictors, which helps to reduce unstable decision
surfaces.

While omitting the radial velocity component opens up the
possibility to search for more stream members, we lose, at the
same time, an additional discriminative dimension. By neglect-
ing the radial velocity distribution of the input data, the imple-
mented classification scheme impacts the contaminant fraction
of our final source list. This leads to an increasing recall at the
cost of reduced precision.

4. Results and discussion

Using no pre-filter selection the classifier ensemble predicts
a total of 4243 stream members. This source list does not,
however, contain all members from the original training set.
Approximately 10% of the training data are not captured by the
ensemble classifier. This reduction can be attributed to the model
validation phase, where we prioritized more conservative mod-
els in an attempt to prevent overfitting. To increase this retrieval
rate, we would need to omit the bootstrapping step combined
with the subsequent majority voting (see Appendix A) and use
the entire sample to train individual classifiers. Also, to be sen-
sitive to more remote points, we would need to include more
flexible models in the classifier ensemble. However, these tools
and choices have been installed to prevent serious overfitting on
the training data and to dampen the influence of outlier sam-
ples in the training data. Since an important goal is to find a
robust model that minimizes the contamination fraction of the
inferred points, we tolerate a slightly reduced retrieval fraction
of the original training set points.

To visualize our results, we implemented a series of quality
selections described in Appendix D, hereinafter referred to as fil-
ter Q1. For a direct comparison to the original training sample,
we implemented the filter criteria as in Paper II (excluding the
criterion on radial velocities), hereinafter referred to as filter Q2.
The quality filters Q1 and Q2 reduce the total number of classi-
fied member stars to 2567 and 2913, respectively. This selection
contains, however, many sources that are predicted by only a
marginal fraction of the 8515 classifiers in the bagging ensem-
ble. Each individual classifier is associated with an individual set
of classified stream members. Thus, considering all 8515 classi-
fiers, each source can be assigned a prediction frequency. We
define this prediction frequency, hereinafter referred to as sta-
bility, as the fraction of classifiers in the bagging ensemble that
include a certain star in their prediction set. Figure 2 shows the
5D distribution of the training sample (top row) and the stream
members classified by our trained OCSVM (quality filter Q1),
where the color indicates the stability of each source for our new
classification. We observe that, on average, stability values tend
to increase towards the central parts of the stream. Additionally,
we find that when inspecting the new source set in the color-
absolute magnitude diagram (see Fig. 5), sources with lower sta-
bility numbers correlate with a larger scatter, while sources with
higher stability values are more compactly distributed around an
idealized isochronal curve. Therefore, stability can be used as a
measure to filter out potential contaminant sources.

Since the training process includes a validation step, even
stars with low stability values can be regarded as potential stream
members. Hence, stability constitutes not a probability estimate,
but rather a quality feature for which we aim to find a suitable

criterion to clean our prediction sample. To determine the relia-
bility of the predicted stellar sample, we estimated the level of
contamination at various stability filters.

We measured the contamination via the velocity dispersion
in 3D, parametrized via vr, vφ, and vz. However, due to con-
tributions of random contaminants, the standard error of the
prediction set is largely dominated by outliers, regardless of the
stability filter criterion. Hence, we describe the variability of
the velocity distribution with the median absolute deviation
(MAD), which is a robust estimate of statistical dispersion. For
reference, the training data distribution measures an MAD in the
3D velocities of 2.1 km s−1.

Figure 3 displays the influence of a variable stability filter
criterion on the 3D velocity distribution. By moving in the plot
from left to right, we gradually added less “stable” sources to
the predicted data set. We identified two distinct sections in this
curve that are dominated by different slopes. Firstly, the section
with stabilities from 100% decreasing to 4% is comprised of a
roughly constant growing scatter around the expected 3D Carte-
sian velocity. Secondly, adding sources with a stability below
∼4% results in a rapid growth of the MAD. This sudden increase
is most likely caused by adding a significant number of contam-
inating field stars. Here, we assumed that these contaminating
field stars are more likely associated with the outer borders of
the stream in the 5D parameter space, which is also where the
trained classifier ensemble is less confident about the stream
membership of stars. This decrease in stability values of pre-
dicted sources towards the outer regions of the stream is also
well visible in Fig. 2.

In addition to the sudden increase at 4%, we identify another
characteristic property of the MAD distribution in Fig. 3. Start-
ing at about 40%, we observe an extended flat distribution up
to 24%. In this range, the amount of scatter remains nearly con-
stant. This filter criterion (stability≥ 24%) yields a very sta-
ble subsample to the more lenient stability> 4% criterion.

The filter behavior can be observed in more detail in Fig. 4,
where the successive cleaning of the prediction set is displayed
in each individual velocity component. The solid lines in the
figure represent a kernel density estimation of the marginal
distributions for various color-coded stability filter criteria.
Specifically, we sampled the distributions at constant intervals
in stability with a step size of 5%. The hue change from red
to shades of blue indicates the transition from a contamination-
dominated to a more robust filter regime. In the marginal distri-
butions, the disproportionately large reduction in the amount of
scatter around mean velocities by applying the stability> 4%
filter criterion becomes apparent. For subsequent filter criteria,
the contamination outside the training sample distribution (black
line) is reduced at a nearly constant rate, particularly in the vr
and vφ observables. Moreover, we identify a kinematic substruc-
ture in the panel displaying vz velocities. Sources identified with
this substructure have systematically larger vertical velocities by
about 5 km s−1 compared to the bulk motion of the stream. These
sources are only clearly separable in vz and do not show any
obvious correlation in other velocities or can be segregated in
spatial coordinates. We note here that this substructure accounts
for the high MAD of the predicted sources and is removed only
for very conservative stability filter criteria above 90%.

Following the above outlined characteristics in the velocity
distributions, we therefore implemented an additional criterion
of stability> 4% or stability> 24% for a more conser-
vative approach. Depending on the quality filter selection, the
stability >4% filter criterion reduces the number of predicted
stream members to 1869 or 2110 for Q1 and Q2, respectively.
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Fig. 2. Positional and proper motion projections of the training and prediction set are displayed in the first and second rows, respectively. Using
a quality pre-selection (see Appendix D), we find a total of 2567 member stars (bottom row), compared to 256 in the training set (top row). The
color information highlights the stability of a given star, which tends to grow towards the central regions of the stream.

In order to quantify the contamination fraction in our source
catalog, we considered the fraction of outliers in the marginal
3D velocity distributions. To do this, we defined, for each veloc-
ity component, a region of inliers as the 3σ around the training
sample mean. This definition constitutes a very conservative esti-
mate, as the velocity distribution of the training data is by design
very narrow. Furthermore, the kinematic substructure in the vz
component naturally leads to very large contamination fractions.
For this reason, we only considered the radial and azimuthal
velocity components when estimating the contamination for var-
ious stability filter criteria. Figure 6 shows the outlier fraction
within each velocity component. Based on our assumptions, we
obtain a contamination estimate of roughly 25% and 20% for the
stability criteria >4% and >24%, respectively. However, we note
again that this is a very conservative estimate that assumes an
intrinsic velocity dispersion of only around 1 km s−1. By increas-
ing the estimated velocity dispersion to 2 km s−1 the contamina-
tion drops to roughly 10 − 15%, which we suspect to be a more
realistic estimate.

Since the ensemble classifier is trained on positional and
proper motion data, we can apply it to any survey that pro-
vides these measurements. In an effort to increase the source
list, especially toward brighter stars, we applied our ensemble
classifier to the Hipparcos (van Leeuwen 2007) source cat-
alog, see Appendix F for more details. In total, we find 21
new potential stream members in the Hipparcos catalog, 10
of which we consider to be robust. We added the 10 pre-
dicted Hipparcos sources to the HRD plot in Fig. 5. Among
the prediction set, we find α Aquarii, the brightest star in the
Aquarius constellation. Using the radial velocity information
from Soubiran et al. (2008), we find a galactocentric velocity
of u = (−3.15, 229.19,−8.73) km s−1, which is well within the
3σ region of the training set. However, a comparison of paral-
lax measurements between Gaia and Hipparcos reveals a large
systematic discrepancy of a factor of approximately two, which
makes α Aquarii a low-fidelity stream member.

Using gyrochronology, Curtis et al. (2019) concluded that
the stream has an age comparable to the Pleiades. This contrasted
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Fig. 3. Median absolute deviation of sources from expected 3D velocity
as a function of the stability quality filter. The x-axis is reversed display-
ing very strict filter criteria on the leftmost side and lenient filter criteria
toward the right side. A trend is visible where the amount of scatter over
the stability filter is split into two parts, where each is characterized by a
different slope. Suitable quality filters are realized by stability> 4%
and, more conservatively, stability> 24%.

with the isochronal age derived in Meingast et al. (2019), which
was hinging on a single star, 42 Ceti, a subgiant. With the new
and larger member list, we can now attempt to make a more pre-
cise estimate regarding the stream’s age.

We compared the stream to a selection of the Pleiades mem-
bers (Gaia Collaboration 2018a). By introducing a slight color
offset of (GBP–GRP + 0.03) to the stream, we find that the source
distributions in the HRD of the Meingast 1 stream and the
Pleiades match almost perfectly, as seen in Fig. 7, implying a
similar age between the two stellar systems. The small color
shift could imply either the presence of dust extinction towards
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diagram. The shades of gray encode the stability information of each
source. The hue change in the color map at 4% denotes the transition
from robust stream members in gray tones to less reliable sources in red.
Additionally, we show 10 new potential stream members, identified by
applying the same classifier to the Hipparcos catalog.

the Pleiades, or a lower metallicity of the stream, or both. The
Pleiades are known to be affected by small amounts of extinc-
tion. Additionally, we find a slight metallicity difference between
the stream and the Pleiades measured by LAMOST Liu et al.
(2015), which is illustrated Fig. E.1. The plot shows a discrep-
ancy between the mean metallicity fraction of the two stellar
populations, where sources in Meingast 1 appear to be slightly
more metal poor than the ones in the Pleiades, which could help
to explain the reddening in color space.
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Fig. 6. Outlier fraction in individual velocity components for a variable
stability filter criterion. Due to a newly identified kinematic substructure
in vz, we estimate the contamination only in the radial and azimuthal
velocity components (see Sect. 4). Based on this premise, the contami-
nation is estimated to be roughly 25% and 20% for the stability criteria
>4% and >24%, respectively.

The three panels in Fig. 7 show the source distributions in
the HRD of both, the Meingast 1 stream and the Pleiades, plot-
ted on top of each other and highlighted by different colors. In
the left plot, sources in the Meingast 1 stream are highlighted in
red, while the Pleiades members selection are kept in gray. The
center plot displays both stellar populations, which are shown in
gray. The right plot displays the Pleiades in blue on top of Mein-
gast 1 in gray. In order to make a fair comparison, we define the
stability filter in such a way that the number of sources of the
stream is equal to that of the Pleiades. This results in the fol-
lowing filter criterion: stability > 45.9. The particular simi-
larity of the two distributions suggests an approximately iden-
tical age. The Gaia collaboration (Gaia Collaboration 2018b)
estimates the age and metallicity fraction of the Pleiades to be
110 My and Z = 0.017, respectively. Therefore, our age estimate
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Fig. 8. Mass function for Meingast 1 stream sources (light blue) and the
training examples (dark blue). The dotted lines indicate model IMFs
within a cluster mass range of 1000−3000 M�.

is within the expected error range, consistent with Curtis et al.
(2019).

We estimated the total mass of the selected sources in accor-
dance with Paper II by using PARSEC isochrones. Using an age
estimate of 110 My and a metallicity fraction of Z = 0.016
results in the mass distribution shown in Fig. 8. The plot depicts
the mass distribution of the training samples (dark blue) versus
the predicted samples (light blue). The dotted gray lines indicate
IMFs (Kroupa 2001) for clusters masses of 1000 M�, 2000 M�,
and 3000 M�. A comparison to the model IMFs suggests an

approximate mass of 2000 M�, as suggested in Paper II. To our
knowledge, this makes the Meingast 1 stream the most massive
stellar stream in the solar neighborhood.

Finally, we can speculate on the origin of the Meingast 1
stream. In Paper II, we put forward the possible cluster ver-
sus association scenarios for the origin of this extended struc-
ture, but opted not to favor one over the other, even though
we found evidence for the existence of at least four overden-
sities in the structure. This ambiguity resulted mainly from the
older age derived in Paper II, which made it not obvious to
favor one of the two scenarios without a proper simulation. The
much younger age determined in Curtis et al. (2019), that we
confirm in this work, allowed these authors to favor the associa-
tion scenario (because ∼100 Myr is too short for cluster dissolu-
tion). The best and most obvious example is the Pleiades cluster,
which is a relatively compact cluster with essentially the same
age as Meingast 1. The velocity substructure we found in this
paper (see Fig. 4) now allows us to make a stronger case favor-
ing the association scenario as the likely initial configuration of
Meingast 1. Unlike compact clusters, stellar associations such as
Sco-Cen are known to have velocity substructures of a few to
several km s−1 (e.g., Wright & Mamajek (2018), Goldman et al.
(2018)). A more meaningful look into the origin of Meingast
1, which would require n-body simulations and the effects of
the Galactic potential, will enable us to clarify the origin of this
mesmerizing structure.

5. Summary and conclusion

We revisited the stream discovered in Meingast et al. (2019) to
search for new members using Gaia DR2 data and a machine-
learning approach. Using the original source selection as training
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data, we deployed a bagging classifier of one-class support vec-
tor machines to the full Gaia DR2 data, searching for new stream
members in position and tangential velocity space. The ensemble
classifier is created in a hyper-parameter search combined with a
model selection that rejects models that do not meet a set of pre-
conditions. The resulting set of classifiers creates a variable pre-
diction frequency for possible stream member stars, which we
used as a criterion to select high-fidelity sources. Subsequently,
we validated the newly found sources in the HR diagram and the
Cartesian velocity distribution.

In total, we find about 2000 stream high-fidelity member
stars, increasing the source population approximately tenfold.
As the newly predicted stream members are no longer limited
by radial velocity measurements, the new selection substantially
extends the main sequence to unveil the stream’s population
across the entire stellar mass spectrum, from B stars to M stars,
including white dwarfs. In a comparison in the color-absolute
magnitude diagram, we find that, apart from being slightly more
metal poor, the stream is indistinguishable from that of the
Pleiades cluster, suggesting a similar age. In the mass range at
which we are mostly complete, ∼0.2 < M� <∼ 4 M�, we iden-
tify a normal IMF. This comparison allows us to estimate the
total mass of the stream to approximately 2000 M�, making it by
far the most massive stream we know. Additionally, we find sev-
eral white dwarfs as members of the stream. We speculate with
more confidence, given the velocity substructure found in this
work, that Meingast 1 is the likely outcome of a stellar associa-
tion, but call for a full, state-of-the-art simulation to be done to
characterize the origin of this mesmerizing structure.
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Appendix A: Training process

The training of each individual predictor in the full model
ensemble is summarized in the following two steps.

Firstly, we select a random pair of hyper-parameters (γi, νi,
(cx/cv)i) and train a model with tenfold cross validation (CV).
Due to a contamination of field stars of a few percent in Paper II,
we encourage stricter and more compact descriptions of the
stream (in 5D), ignoring potential outliers in the training sam-
ple. In a first selection step, we filter models with a low average
accuracy across the holdout sets of <0.5 or a standard deviation
of above 0.15. The standard deviation filter helps to obtain fairly
conclusive predictors for different subsamples on a fixed set of
hyper-parameters.

Secondly, models that pass the CV step are deployed on the
full data set (see Sect. 2). In an effort to minimize contamina-
tion of nearby5 field stars and thus boost robustness of the predic-
tion, we train the model on 10 bootstrap samples, with a sample
size of 80% of the training data size. The union of all 10 predic-
tions is then considered the final model. Before we add the newly
trained model (with the hyper-parameter set (γi, νi, (cx/cv)i) into
the final bagging classifier, we validate its performance against our
prior beliefs about the approximate model structure described in
Sect. 3.2

Appendix B: Validation process

After training a classifier, we validate its ability to capture impor-
tant physical aspects about the estimated size and shape of the
stellar stream. We require the classifier to capture at least the
following criteria:

1. The number of predicted stream members Ns must not
exceed a physically sensible range, which is limited to Ns ∈

[500, 5000].
2. The extent of the predicted stream members in position

and proper motion space must be similar to the original ones.
3. The cylindrical velocity distribution of the stream mem-

bers must not deviate too much from the training sample distri-
bution.

The similarity condition (2.) is achieved by requiring the dis-
persion of the predicted to the original stream members in position
and proper motion space to be approximately equal. We approx-
imate the extent, or dispersion of the stream in both spaces by a
single number, namely the mean distance d of its member stars
to the centroid of the full stream. For a point in position space
r = (x, y, z) and its corresponding centroid rc, dr is

dr =
1
N

N∑
i

||ri − rc||, (B.1)

where N is the number of stars belonging to the cluster. Respec-
tively, in proper motion space with a point u = (µα, µδ) and

centroid uc, du is:

du =
1
N

N∑
i

||ui − uc||. (B.2)

We use these two structure parameters dr and du to determine the
extent of the stream in position and proper motion space, respec-
tively. Our aim is to find models whose predicted points retain a
similar dispersion to the original ones. To avoid overfitting, we
compare the dispersion of the prediction set to the training set
which acts as an upper limit:

d
orig
r/u > d

pred
r/u . (B.3)

Lastly, we control the centroid position of the predicted
stream members to avoid systematic shifts. The predicted and
original stream centroid must be reasonably close to each other
with respect to the average dispersion of training points.

||rorg
c − rpred

c || < d
org
r × 0.1 (B.4)

||uorg
c − u

pred
c || < d

org
u × 0.1 (B.5)

The third condition is implemented by examining the con-
tamination of predicted samples compared to the training sam-
ple. To get a rough estimate of the contamination, we compare
the galactocentric velocity distribution, meaning u = (vr, vφ, vz),
of the predicted sources to the training sample. Instead of com-
paring the velocity dispersion of both samples, we characterize
the level of contamination by considering the fraction of outlier
sources. This way, we try to mitigate the influence of large outliers,
which increase the dispersion drastically for such a low number of
sources. In order to characterize outlier sources, we consider the
training examples. Assuming that almost all sources lie within the
±3σ range around the mean, we consider the ratio of sources lying
outside of the 3σ range compared to the total amount of sources.
A classifier is rejected if on average, across the individual velocity
components, more than 25% of sources are considered outliers.
The aim of this criterion is to remove models that extend into a
region of feature space where the radial velocity distribution does
not match our assumption of a co-moving structure.

Appendix C: Parameter tuning results

The hyper-parameter search in combination with a classifier
selection and validation step (see Sect. 3.2) yields a set of
approvedparameter triples (νi, γi, (cx/cv)i) that make up the final
OCSVM bagging predictor. The distribution of accepted triples
is displayed in Fig. C.1. The color information illustrates the
accepted model faction within a certain hyper-parameter bin
range. A model is accepted if it passes the quality criteria pre-
sented in Sect. 3.2. The model ensemble consists of 8515 indi-
vidual predictors.

5 Nearby refers to sources in the vicinity of the stellar stream in the
5D feature space.
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Fig. C.1. Hyper-parameter search in parameters ν, γ, and cx/cv yielding the one-class support vector machine bagging predictors. The color
information illustrates the accepted model faction within a certain hyper-parameter bin range. A classifier is accepted if it passes the quality
criteria presented in Sect. 3.2. The model ensemble consists of 8515 individual predictors.

Appendix D: Quality criteria
In general, the source identification method we present in this
paper is independent of any quality criteria. However, in order to
show the distribution of stars in the color magnitude diagram,
we apply the following error criteria on data quality. Follow-
ing the description in Lindegren et al. (2018) the five-parameter
solution depends on the number of visibility periods used for
a certain source. A visibility period is defined as a group of
observations separated from other groups by a gap of at least
four days. Since a five-parameter solution is accepted only for
visibility_periods_used> 6, we implement said criterion.

A recommended astrometric quality parameter is the re-
normalised unit weight error (RUWE) described by Lindegren
(2018). It is based on a re-calibration of the unit weight error
described in Lindegren et al. (2018). We follow the advice
in the technical note (Lindegren 2018) and use the criterion
RUWE< 1.4 to select astrometrically reliable sources. Further-
more, we implement additional astrometric quality measures,
astrometric_sigma_5D_max< 0.5 and $/σ$ > 10, which
reduce the number erroneous measurements.

Finally, we adopt the following photometric qual-
ity criteria, phot_bp_mean_flux_over_error> 10 and
phot_rp_mean_flux_over_error> 10.

Appendix E: Metal content
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Fig. E.1. Comparison of metallicity fraction of Pleiades and Meingast
1 memeber stars. The vertical lines indicate the mean metal content of
both populations. We find that the members of the Meingast 1 associta-
tion are slightly more metal poor than the Pleiades.

Figure E.1 shows a comparison of the metallicity fraction
Z between a Pleiades member selection (Gaia Collaboration
2018a) and the stream members. A cross-match of the Pleiades
and stream source selections to the LAMOST DR5 Liu et al.
(2015) catalog results in 383, and 83 matches, respectively. The

conversion from chemical abundance ratios [Fe/H] to the
metallicity fraction Z has been made in accordance with the
PARSEC (Bressan et al. 2012) solar value of Z = 0.015. Subse-
quently, we filter out the most untrustworthy sources by requir-
ing that the error of the measured chemical abundance ratios
[Fe/H] is below 0.05 and [Fe/H] > −1. Additionally, we only
select sources above an effective temperature of 5000 K. These
criteria yield 197 and 44 matched sources for the Pleiades and
the Meingast 1 stream, respectively. The metal content distri-
butions of the Pleiades and stream members show a large scat-
ter, but the positions of their respective mean indicate that the
Meingast 1 stream members appear to be slightly more metal
poor compared to the Pleiades member stars.

Appendix F: Hipparcos source selection
Compared to the training samples from the Gaia DR2 catalog,
the Hipparcos sources have larger associated standard errors
of measured quantities. Considering the higher uncertainty in
the Hipparcos catalog variables, we adopt a more conservative
stability filter criterion of stability> 50%. Despite a rather
high stability cut, a large standard error increases the chance
of contaminant stars falling into the selection. Therefore, we
adopt a second quality filter where we sample each data point
from marginal normal distributions centered on the provided
mean value with a standard deviation of the provided standard
error of each observable. We then draw 100 samples per source
from these marginal distributions and count how often these re-
sampled sources are again predicted to be a stream members
with stability> 50%. Eventually, this quality criterion yields
11 additional sources with a re-sampling fraction of over 50%.

Appendix G: Table content
Table G.1. Contents of the source catalog, which are available online
via CDS.

Column name Description

source_id Gaia DR2 source identification number
ra RA (deg)
dec Declination (deg)
X x-Position (pc)
Y y-Position (pc)
Z z-Position (pc)
pmra µα (mas yr−1)
pmdec µδ (mas yr−1)
Stability Stability percentage (%)
q1 Filter criterion Q1 (bool); see Appendix D
q2 Filter criterion Q2 (bool); see Paper II

Notes. The positional data XYZ are measured in Galactic Cartesian
coordinates centered on the Sun.

The content of the published source catalog is summarized
in Table G.1.
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