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YSOs: Critical link to understanding Galactic baryon cycle
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YSOs: Critical link to understanding Galactic baryon cycle
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— aim to improve this




Aim to improve YSO catalog

 Data fusion: use as many informative data sets as possible
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Aim to improve YSO catalog

* Data fusion: use as many informative data sets as possible

*

(Gaia Wik =
2MASS Spitzer
WISE APOGEE

LAMOST



Aim to improve YSO catalog

* Data fusion: use as many informative data sets as possible

* Produce well-calibrated posteriors over stellar parameters given
spectra & photometric observations



Aim to improve YSO catalog

* Data fusion: use as many informative data sets as possible

* Produce well-calibrated posteriors over stellar parameters given
spectra & photometric observations

e Scale inference to > 1M - 1B stars



Challenges with “1 model does it all” approach

* Fusing surveys is hard due to different
* resolutions & depths
* coverage
* Instrument response
* Noise model
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Challenges with “1 model does it all” approach

* Fusing surveys is hard due to different
* resolutions & depths
* coverage
* Instrument response
* Noise model

* Model misspecification leads to domain shift between simulated
and real data

— Domain-Adaptive SBIl w/ incomplete, multi-survey data



Model implementation
. SBI model



Typical ML regression
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followed by pointwise non-linear map: f,(xX) = ¢
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Typical ML regression

—

% - MLP - 6

MLP... Series of learnable affine transformations of x

A\

followed by pointwise non-linear map: f,(xX) = ¢

Trained by minizing | |5 ] ,



Typical ML regression
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Typical ML regression

MLP

=

Would like to have p(é \ 55)

However: — p(x | 5) might not be tractable

— p(@ | X) might not scale to millions - billions of “runs”

BUT: if we have access to a simulator, we can approximate p(0 | x)



Simulation based inference (SBI) setup

Simulator ﬁ—i [ l// v;
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. e Mechanistic forward model
Prediction: .
» We can generate samples from a simulator x ~ p(x | 8)

(—
Likelihood p(x | 0) = sz p(x, z|0) is intractable

Inference:
 Inference is challenging

© Siddharth Mishra-Sharma



Neural posterior estimation

- MLP - G ML regression

=



Neural posterior estimation

-
X - MLP - G ML regression

R . Conditional -
X ~ MLP J,(x) = s " neural density p(H | S) p(9 | X)

estimator

Papamakarios & Murray (2016) & Lueckmann et al. (2017)



Normalizing flows

Conditional
neural density
estimator

‘ f1 Zo @ .fz Zj_ 1 @fz+1 Zz

Zp ~ pO(ZO) g ™ pz(zz) LK ™~ pK(ZK)

Parameterized, invertible maps fl that transform Gaussian into target distribution
Training objective: maximum likelihood

© janosh (wikipedia)



Neural posterior estimation

N . Conditional -
X - MLP f¢(x) — " neural density p(6’ | S) p(6’ | X)
estimator

Cannot deal with missing data



Transformer: learning with incomplete data

—

X — Transformer

Attention masking: M.

Gloeckler et al. (2024)



Transformer: learning with incomplete data

X — Transformer —

Y Conditional density (5 | _>)
estimator (flow matching) P A

Attention masking: M.



Transformer: learning with incomplete data

= ___ Conditional density a2
A Iransformer estimator (flow matching) P (9 | X)
Attention masking: M. |
2MASS Spitzer
WISE APOGEE

LAMOST



Model implementation
Il. Dealing with model misspecification



Input split into simulated, real & paired data

xsim

.X_’xr

xsim—real—pairs

eal



Modality encoders: split into Indiv. spectra

Apogee
Boss

Lamost
xsim XP
Photometry

Gaia, 2Mass, ...



Modality encoders: encode

MLP encoder R
Apogee 70 = ()
Boss e
Lamost - 7
. . XP
Asim XP Z
Photometry

Gaia, 2MASS, ...— ZSG



Modality encoders: alignment loss

Boss ﬁ ZSB :
Lamost b 7o 5 <y

S1m XP S OT losses r Areal

Photometry

Gaia, 2MASS, ...

Goal: force latent representations of simulated and real data to “look the same”



Sim-real alignment via optimal transport

(a) Samples

—
Zsim—real—]g)airs

(b) Exact

(¢) Gromov-Wasserstein

Gu et al. (2022)

Goal: force latent representations of simulated and real data to “look the same”

Gu et al. (2022)



Let’s test this



Galaxy A ... “sim” Galaxy B ... “real”

* Dust according to * Dust according to
Bayestar2019 (Green+2018) Edenhofer+2024




Galaxy A ... “sim” Galaxy B ... “real”

Synthetic spectra: Synthetic spectra:
e BaSel 2.2, ~ Atlas 9  BT-Settl Library (Allard,
empirically recalibrated Hauschildt and Schweitzer

(Leujeune+1998) 2{0[00)
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Results



Pilot study: Gaia+2MASS+WISE

Existing Classic SBI, no missing data
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Updated pipeline + XP spectra

Posterior mean sim
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— real
— real

Without DA
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Pred logip (Age) [yr]

Predictions
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Summary

 Combine flow matching models + transformer model to
learn arbitrary conditionals and marginals

 Add OT + pair loss to close domain gap

* Obtain promising results on simulations



Come find me

| want to know more!
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Come find me

| don’t trust ML models!
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Come find me

What would you need to see ' don’t trust ML models!
(on sims) to trust them more? '
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Thank you!
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