

Learning with Gaps

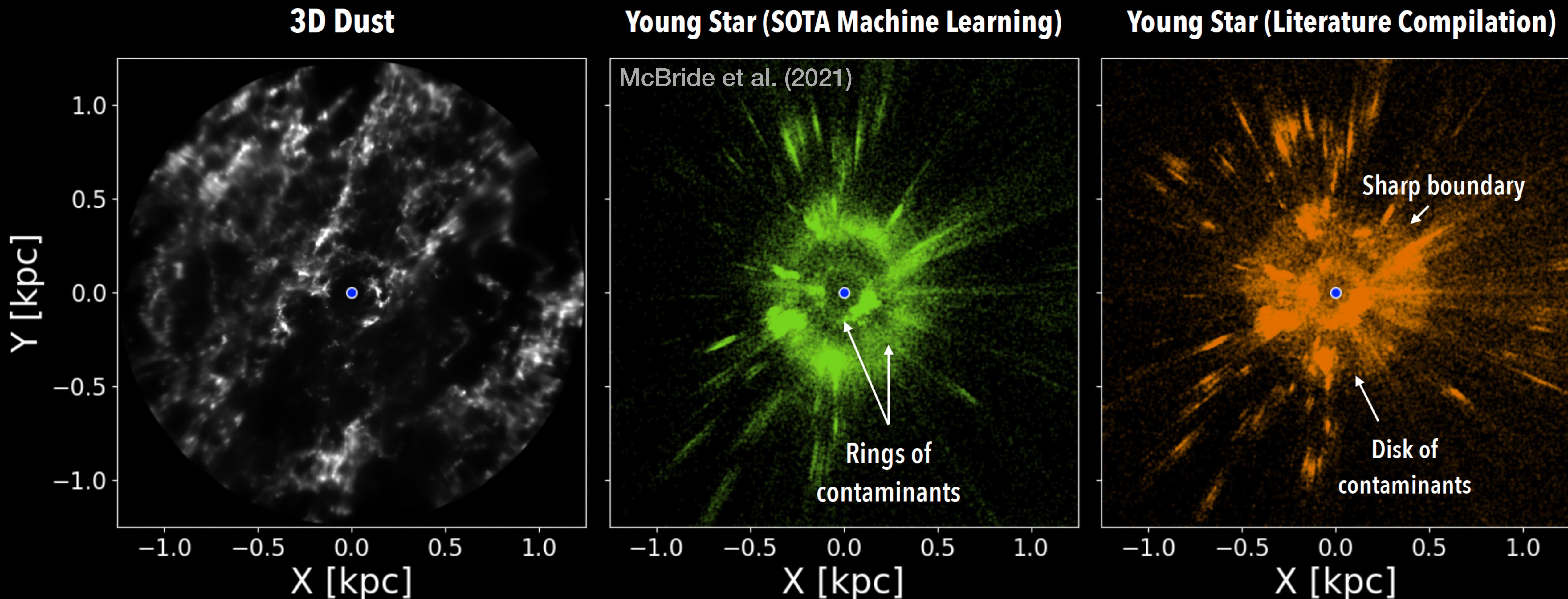
A Domain-Adaptive SBI Framework for Mapping Young Stars from Incomplete, Multi-Survey Data

Sebastian Ratzenböck @CfA

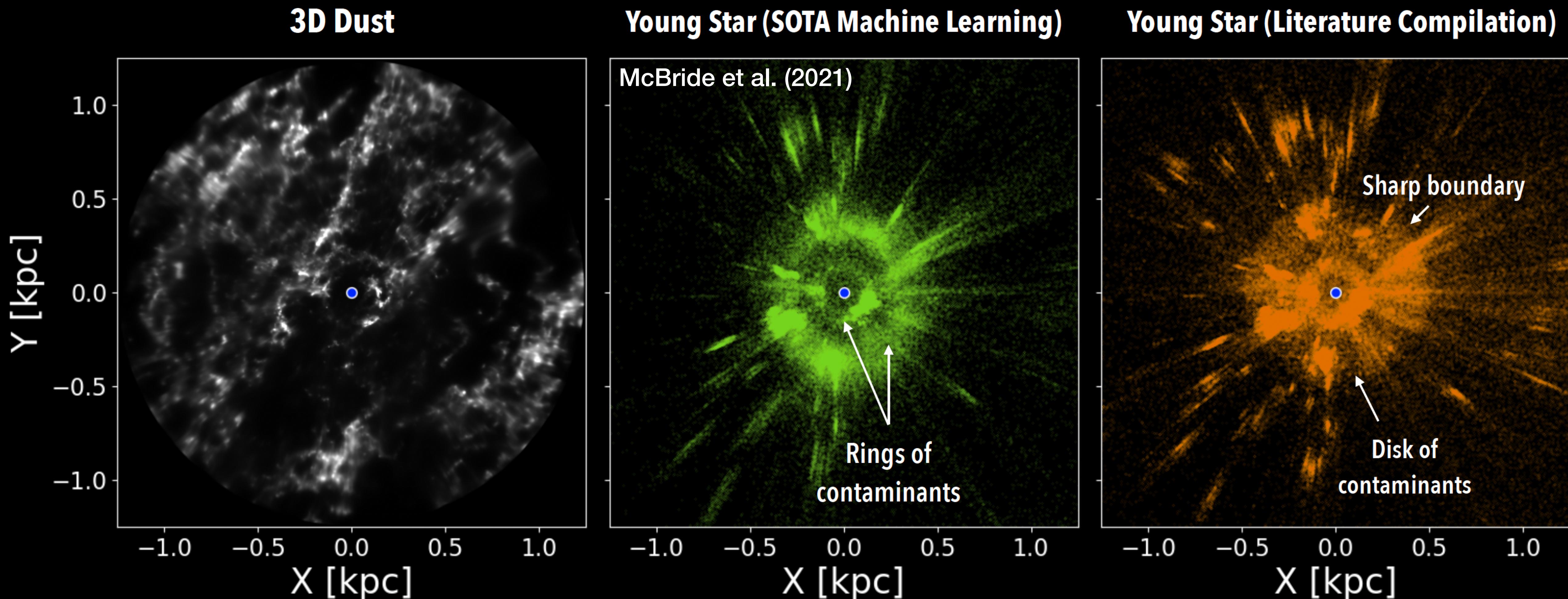
In collaboration with

Catherine Zucker (CfA), Joshua Speagle (UToronto), Phillip Cargile (CfA), Philipp Frank (Stanford), Andrew Saydjar (Princeton)

YSOs: Critical link to understanding Galactic baryon cycle



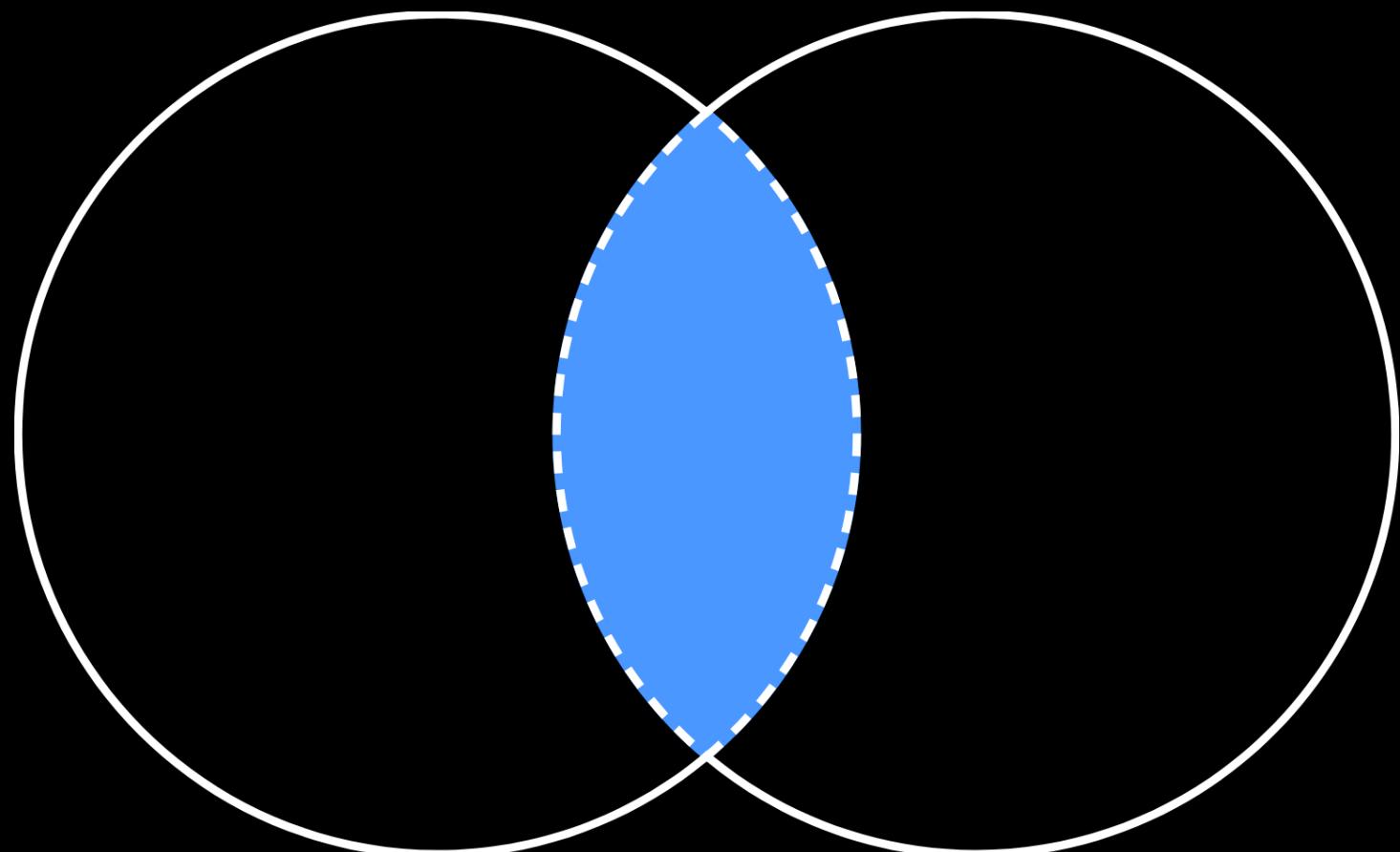
YSOs: Critical link to understanding Galactic baryon cycle



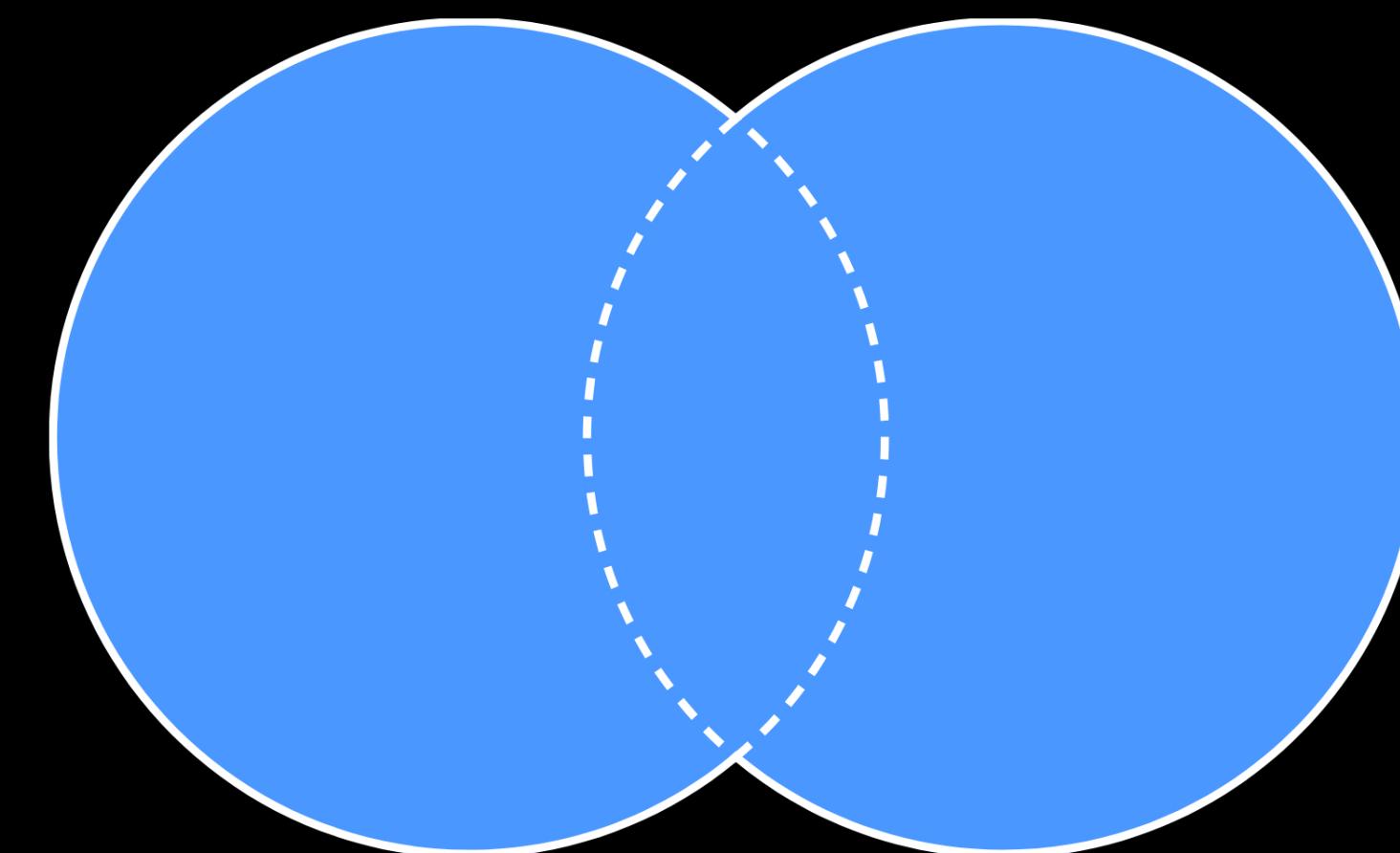
— aim to improve this

Aim to improve YSO catalog

- Data fusion: use as many informative data sets as possible



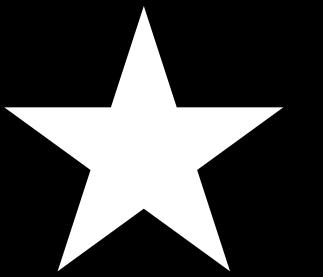
Often works focus
on intersection



Aim to be truly multi-survey

Aim to improve YSO catalog

- Data fusion: use as many informative data sets as possible



Gaia
2MASS
WISE
LAMOST

WISE
Spitzer
APOGEE

Aim to improve YSO catalog

- Data fusion: use as many informative data sets as possible
- Produce well-calibrated posteriors over stellar parameters given spectra & photometric observations

Aim to improve YSO catalog

- Data fusion: use as many informative data sets as possible
- Produce well-calibrated posteriors over stellar parameters given spectra & photometric observations
- Scale inference to $> 1M - 1B$ stars

Challenges with “1 model does it all” approach

- Fusing surveys is hard due to different
 - resolutions & depths
 - coverage
 - instrument response
 - noise model
 - ...

Challenges with “1 model does it all” approach

- Fusing surveys is hard due to different
 - resolutions & depths
 - coverage
 - instrument response
 - noise model
- **Model misspecification** leads to domain shift between simulated and real data

Challenges with “1 model does it all” approach

- Fusing surveys is hard due to different
 - resolutions & depths
 - coverage
 - instrument response
 - noise model
- **Model misspecification** leads to domain shift between simulated and real data

→ ***Domain-Adaptive SBI w/ incomplete, multi-survey data***

Model implementation

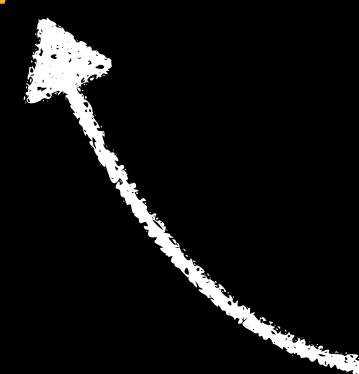
I. SBI model

Typical ML regression

$$\vec{x} \longrightarrow \text{MLP} \longrightarrow \vec{\theta}$$

MLP... Series of ***learnable*** affine transformations of \vec{x}

followed by pointwise non-linear map: $f_\phi(\vec{x}) = \hat{\theta}$



ϕ... learnable parameters

Typical ML regression

$$\vec{x} \longrightarrow \text{MLP} \longrightarrow \vec{\theta}$$

MLP... Series of ***learnable*** affine transformations of \vec{x}
followed by pointwise non-linear map: $f_\phi(\vec{x}) = \hat{\theta}$

Trained by minimizing $\|\vec{\theta} - \hat{\theta}\|_2$

Typical ML regression

Typical ML regression

However:

- $p(\vec{x} | \vec{\theta})$ might not be tractable
- $p(\vec{\theta} | \vec{x})$ might not scale to millions - billions of “runs”

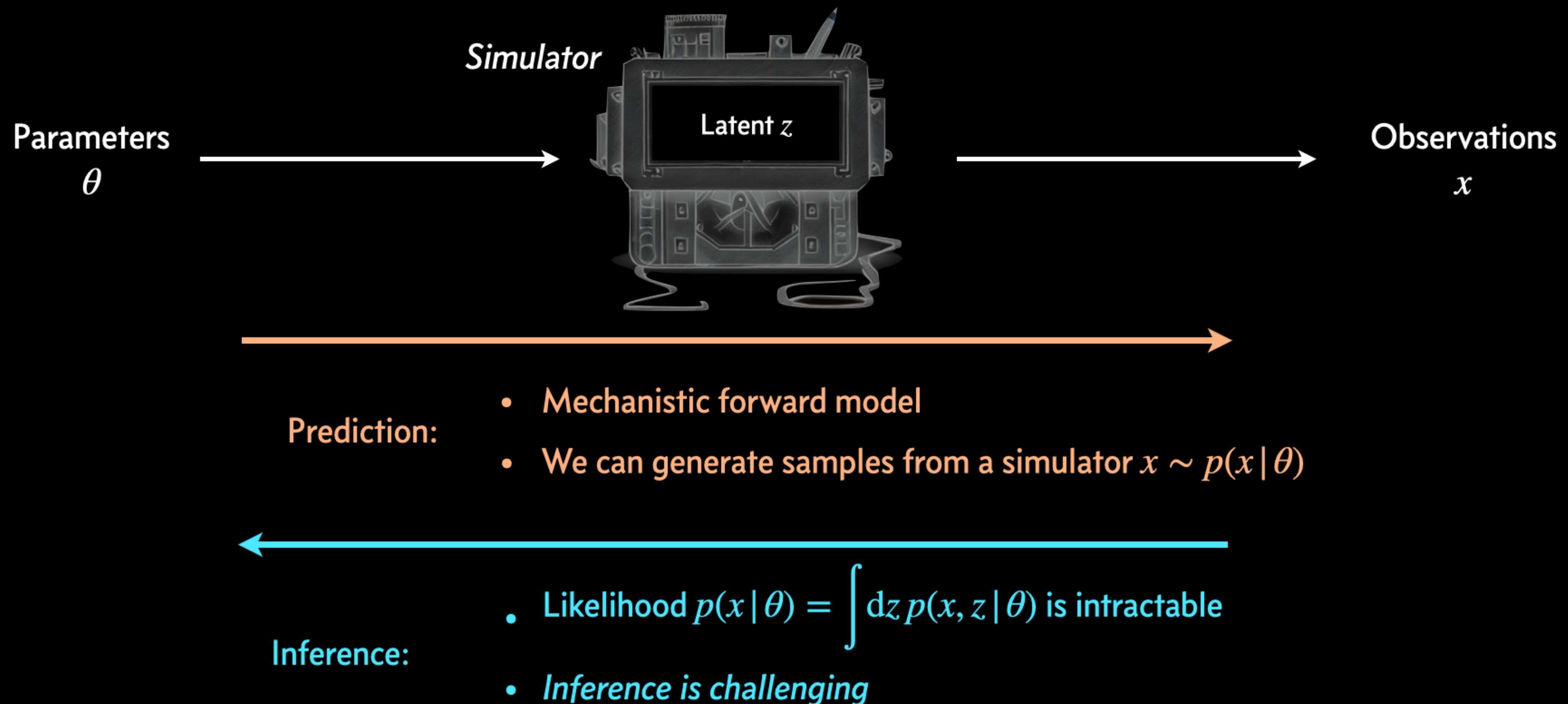
Typical ML regression

However:

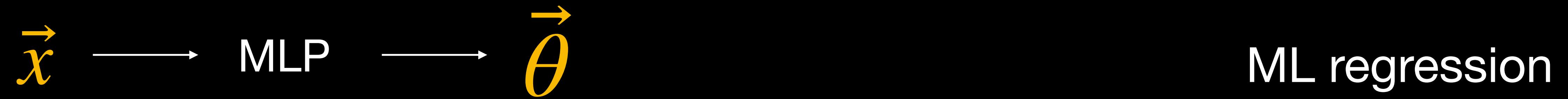
- $p(\vec{x} | \vec{\theta})$ might not be tractable
- $p(\vec{\theta} | \vec{x})$ might not scale to millions - billions of “runs”

BUT: if we have access to a simulator, we can approximate $p(\vec{\theta} | \vec{x})$

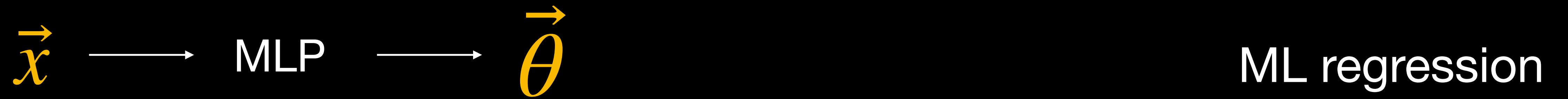
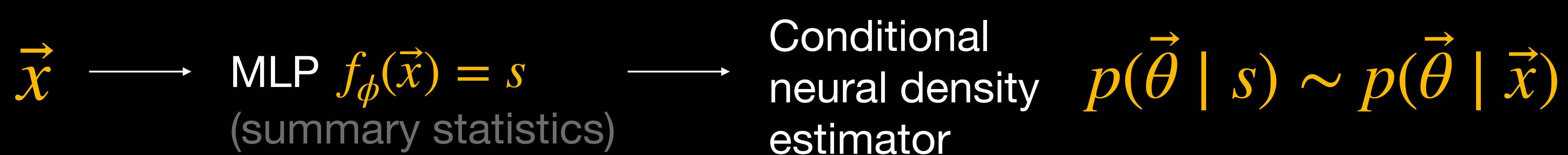
Simulation based inference (SBI) setup



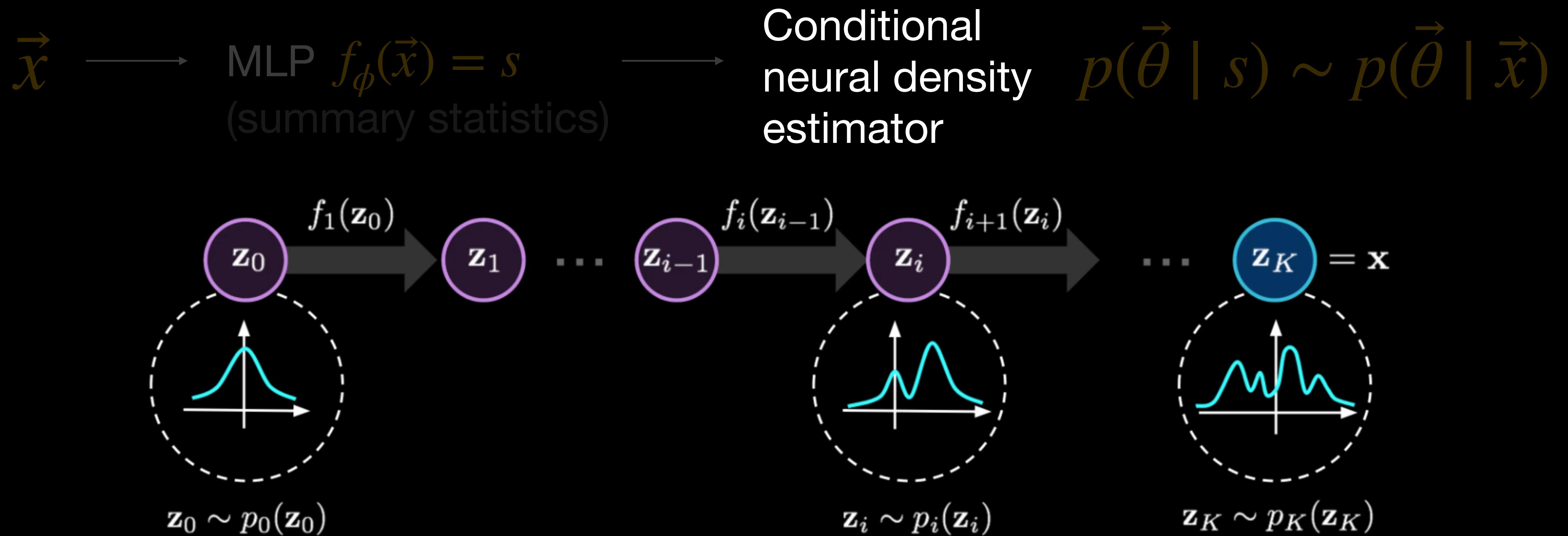
Neural posterior estimation



Neural posterior estimation



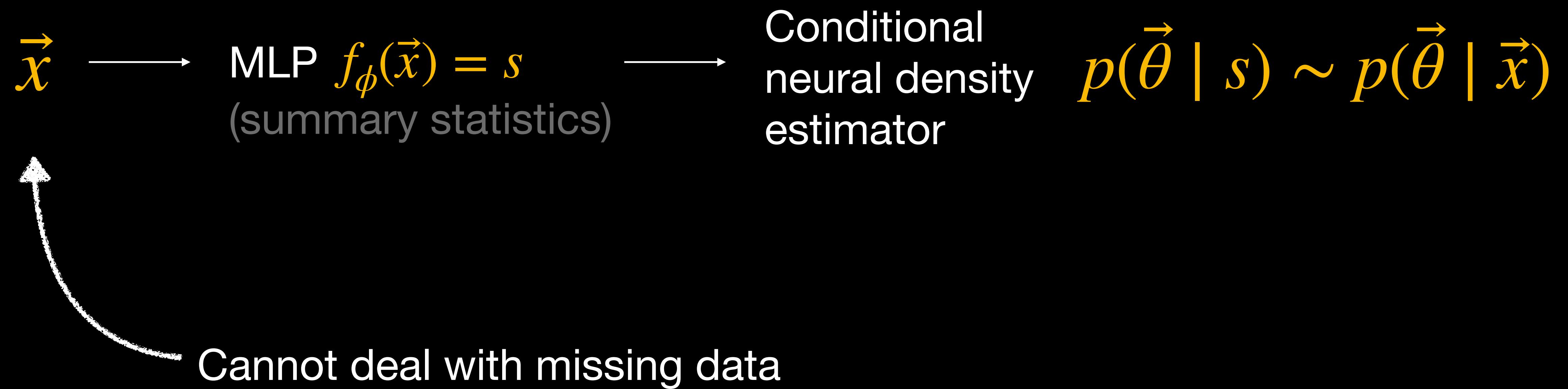
Normalizing flows



Parameterized, invertible maps f_i that transform Gaussian into target distribution

Training objective: ***maximum likelihood***

Neural posterior estimation



Transformer: learning with incomplete data

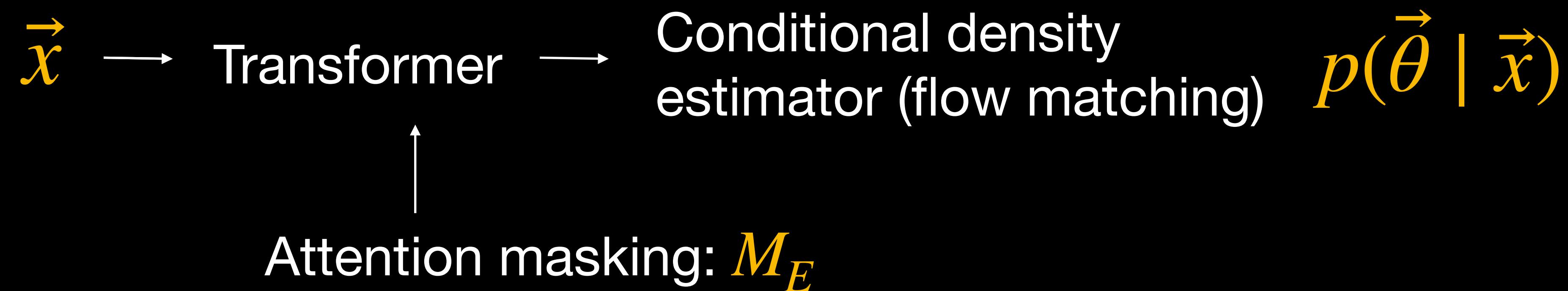
\vec{x} → Transformer

Attention masking: M_E

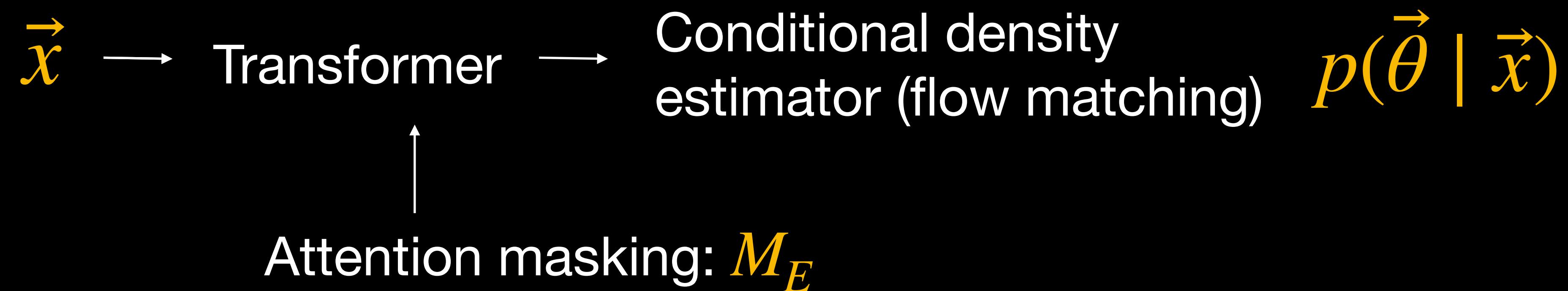
Can enforce conditional independence

- Effectively marginalize over missing values

Transformer: learning with incomplete data



Transformer: learning with incomplete data



Model implementation

II. Dealing with model misspecification

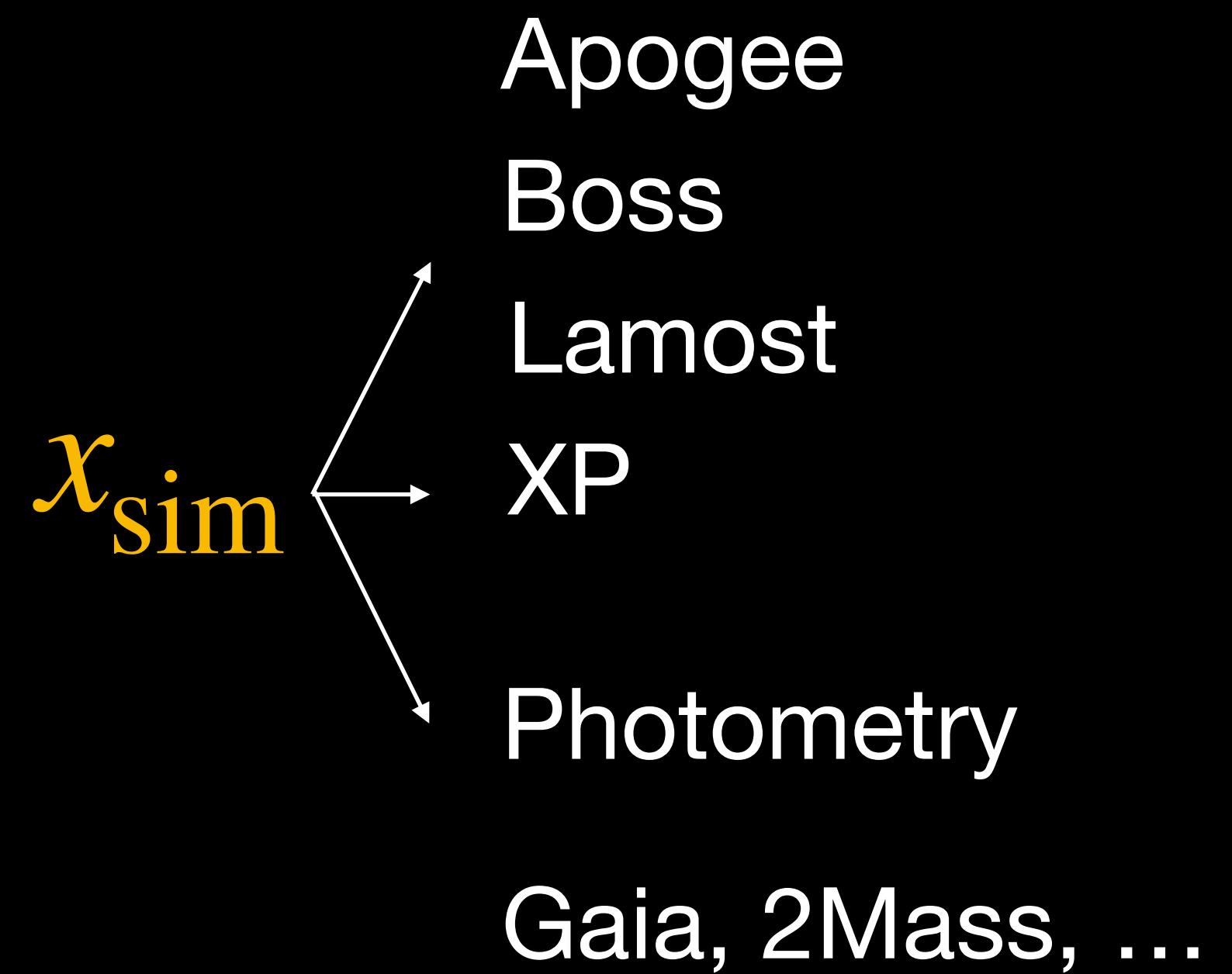
Input split into *simulated*, *real* & *paired* data

x_{sim}

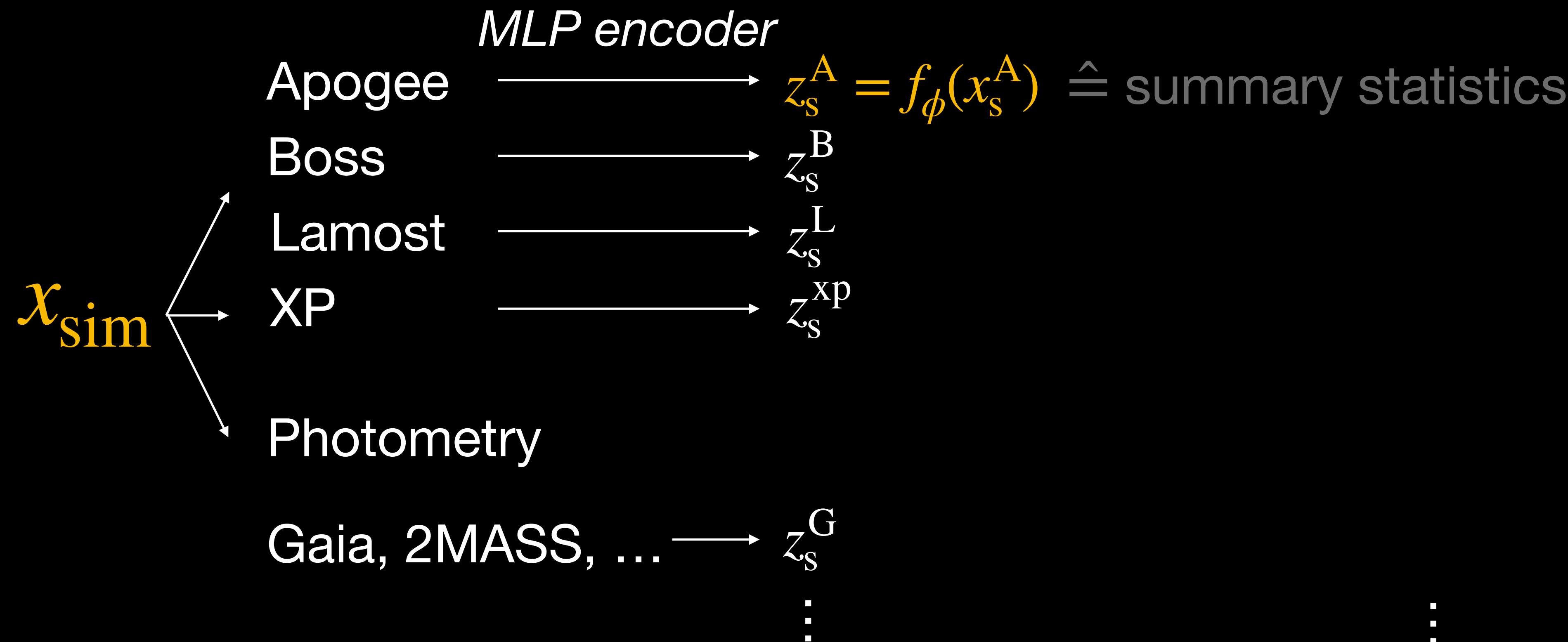
$x \rightarrow x_{\text{real}}$

$x_{\text{sim-real-pairs}}$

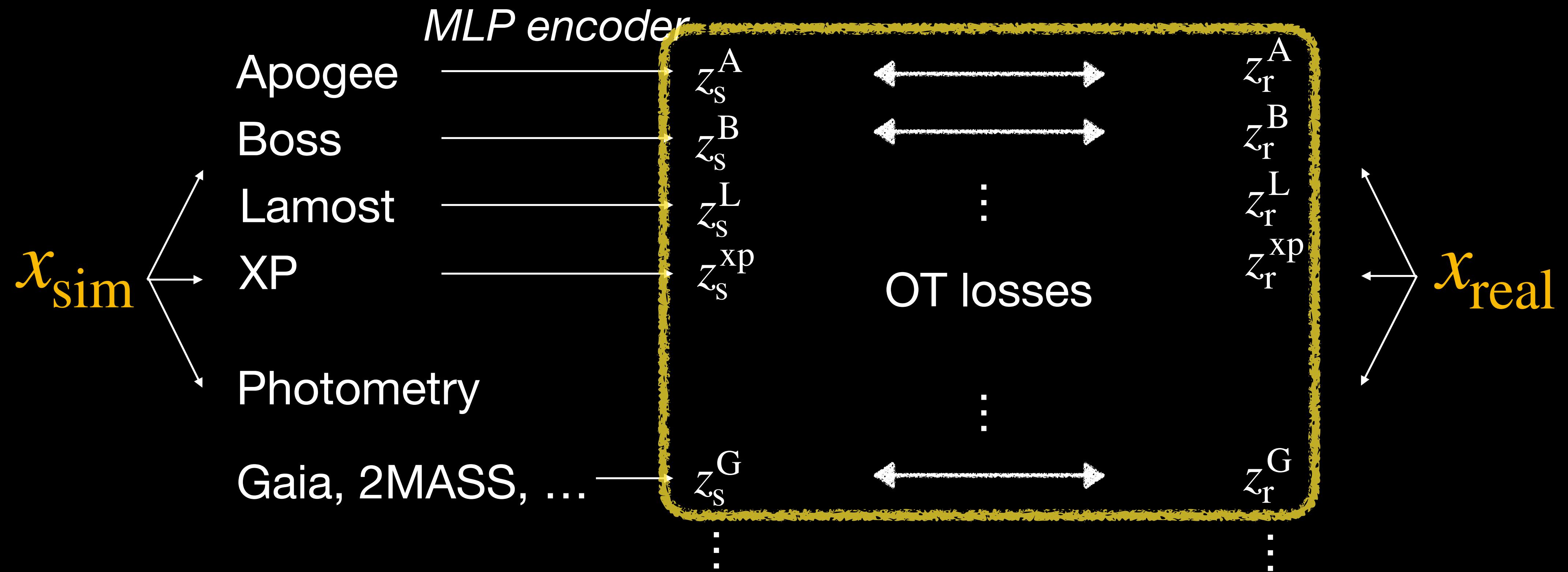
Modality encoders: split into indiv. spectra



Modality encoders: encode



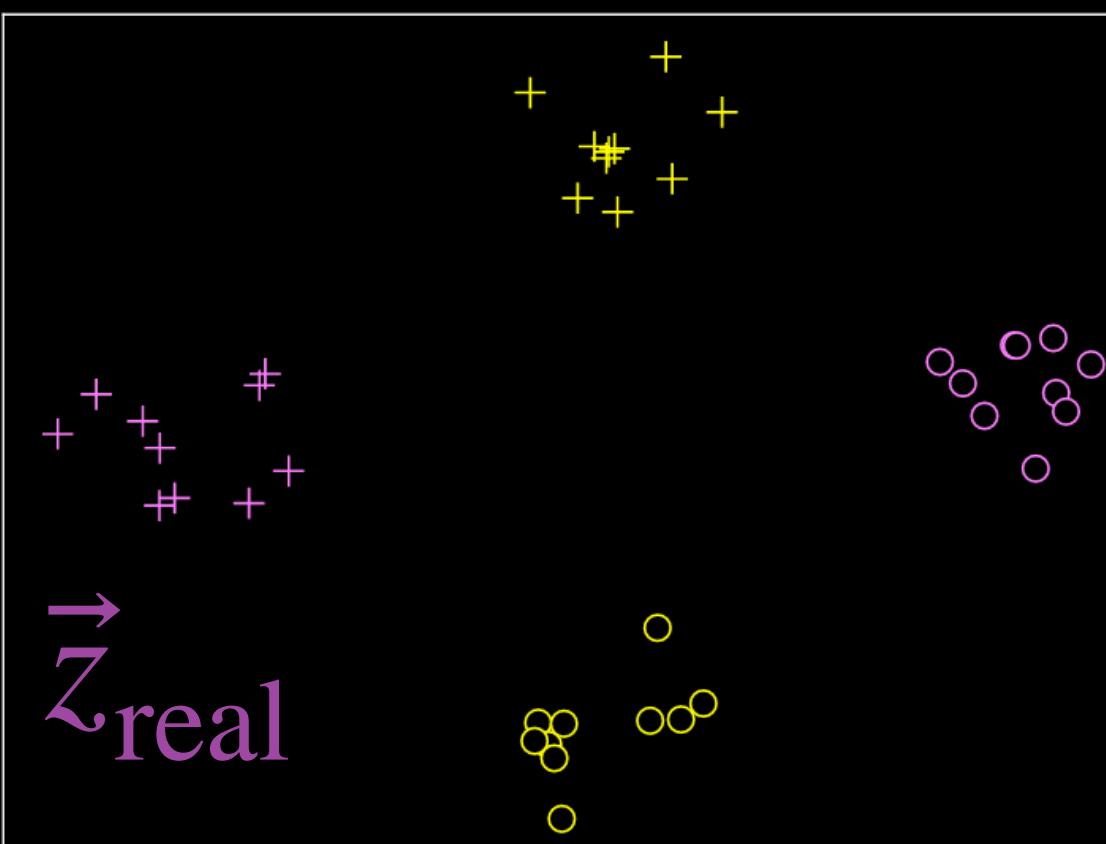
Modality encoders: alignment loss



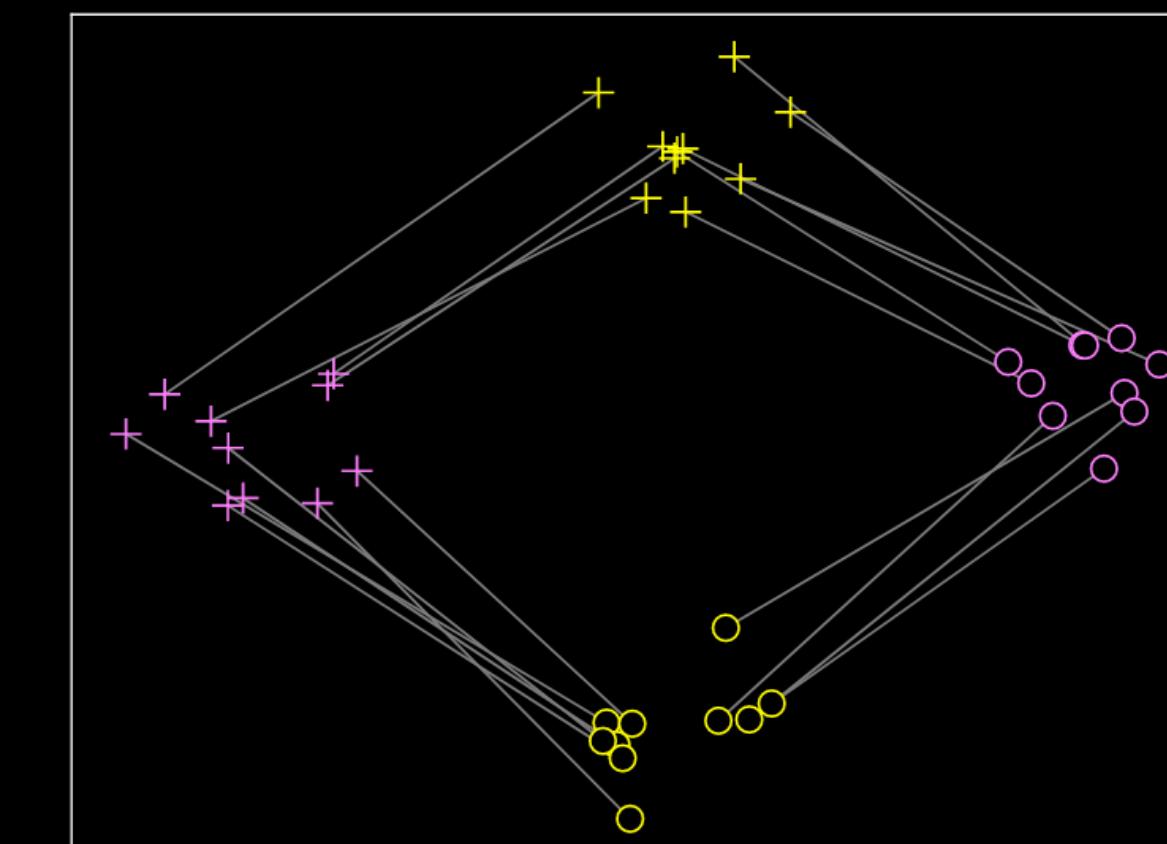
Goal: force latent representations of simulated and real data to “look the same”

Sim-real alignment via optimal transport

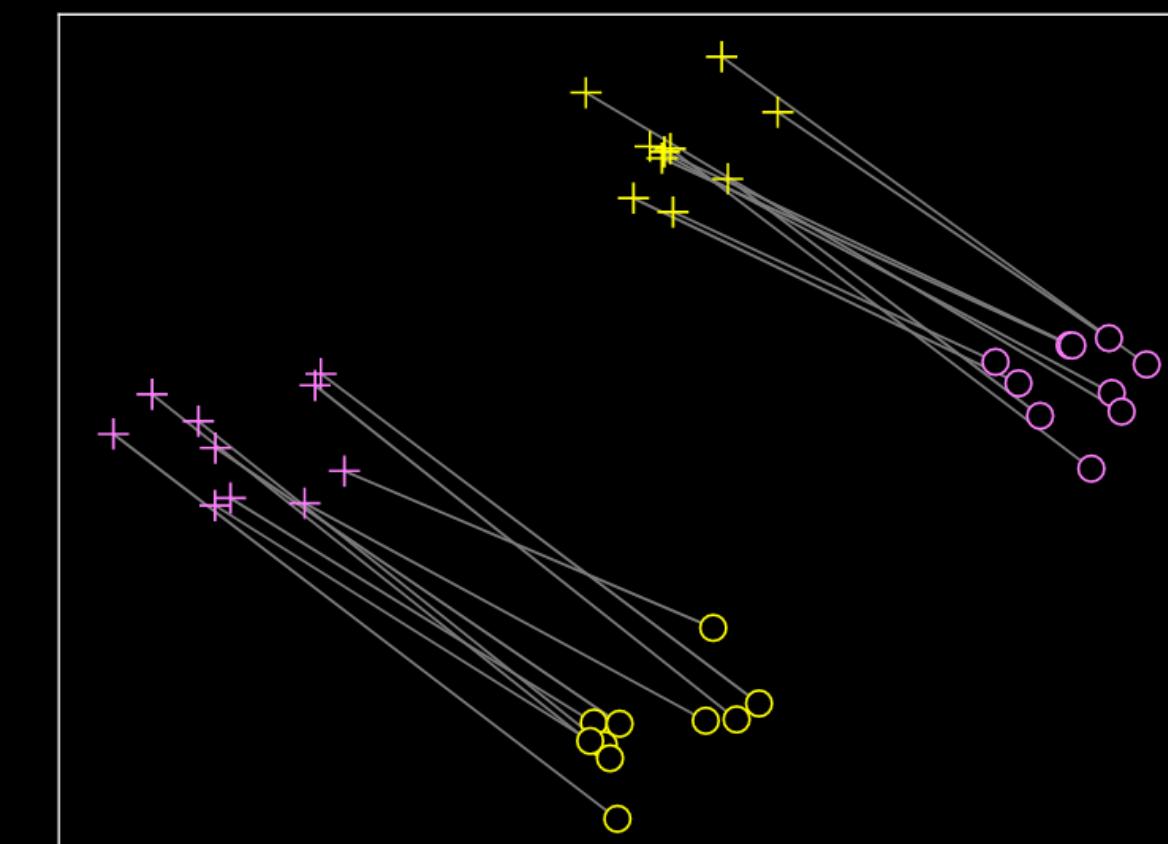
$$\vec{z}_{\text{sim}} = f_{\phi}(\vec{x}_{\text{sim}})$$



(a) Samples

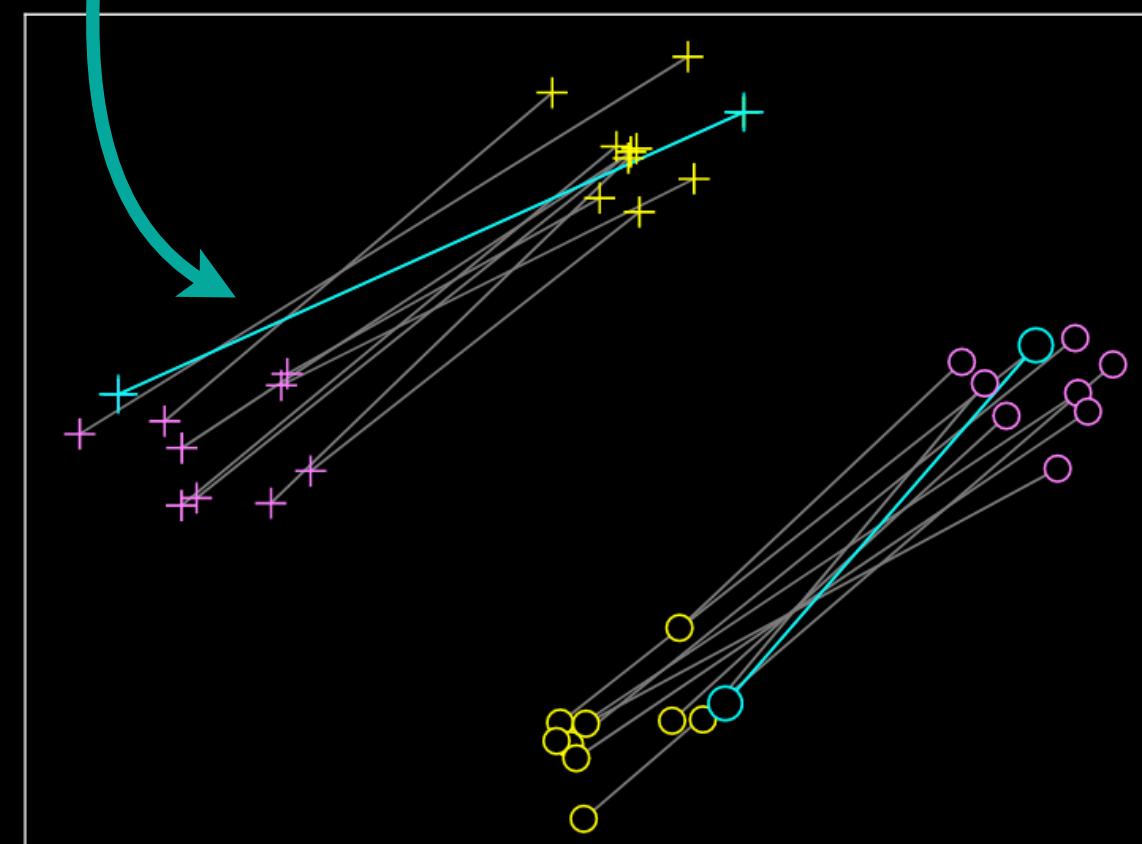


(b) Exact



(c) Gromov-Wasserstein

$$\vec{z}_{\text{sim-real-pairs}}$$



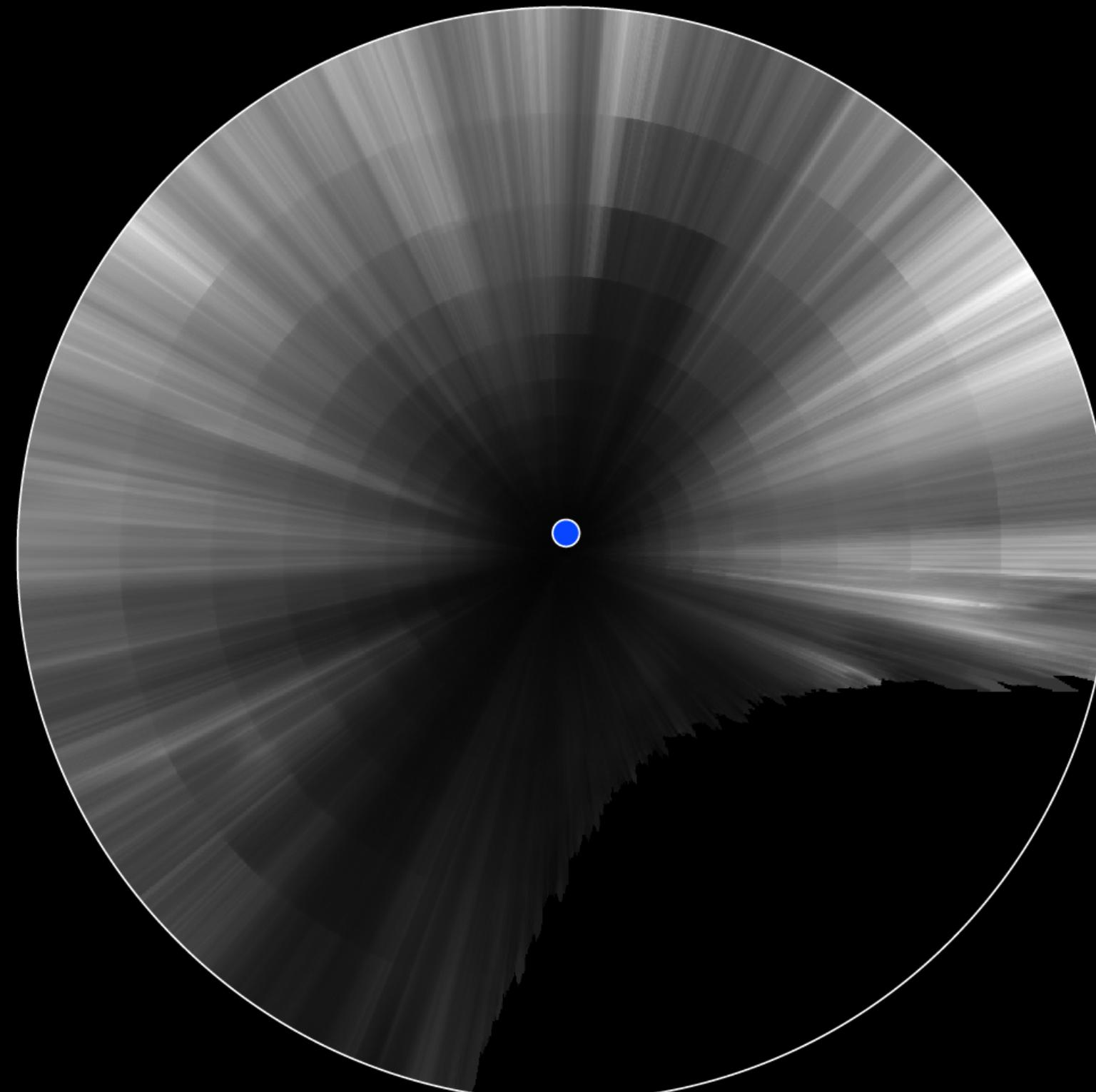
Gu et al. (2022)

Goal: force latent representations of simulated and real data to “look the same”

Let's test this

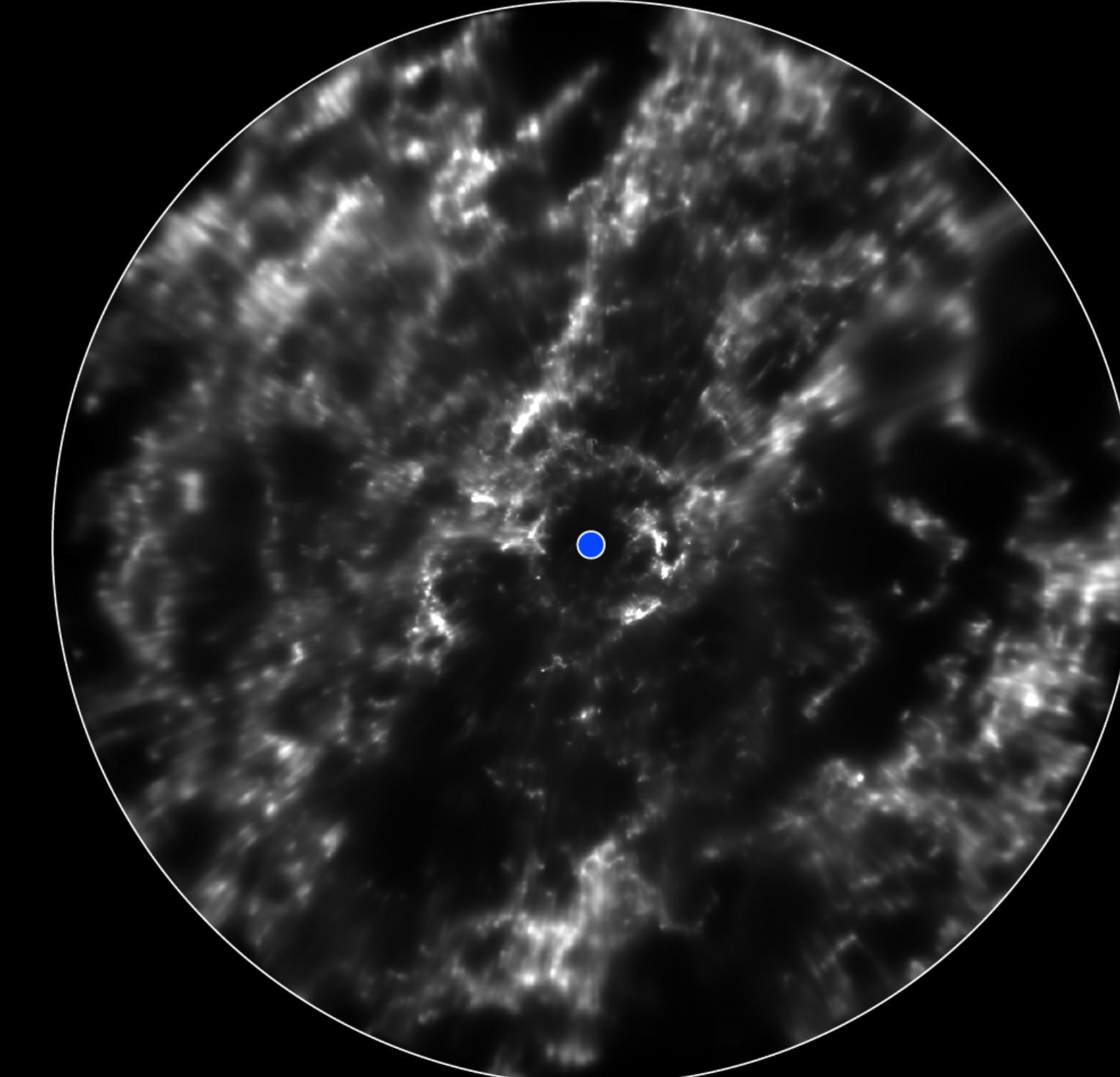
Galaxy A ... “sim”

- Dust according to Bayestar2019 (Green+2018)



Galaxy B ... “real”

- Dust according to Edenhofer+2024



Galaxy A ... “sim”

Synthetic spectra:

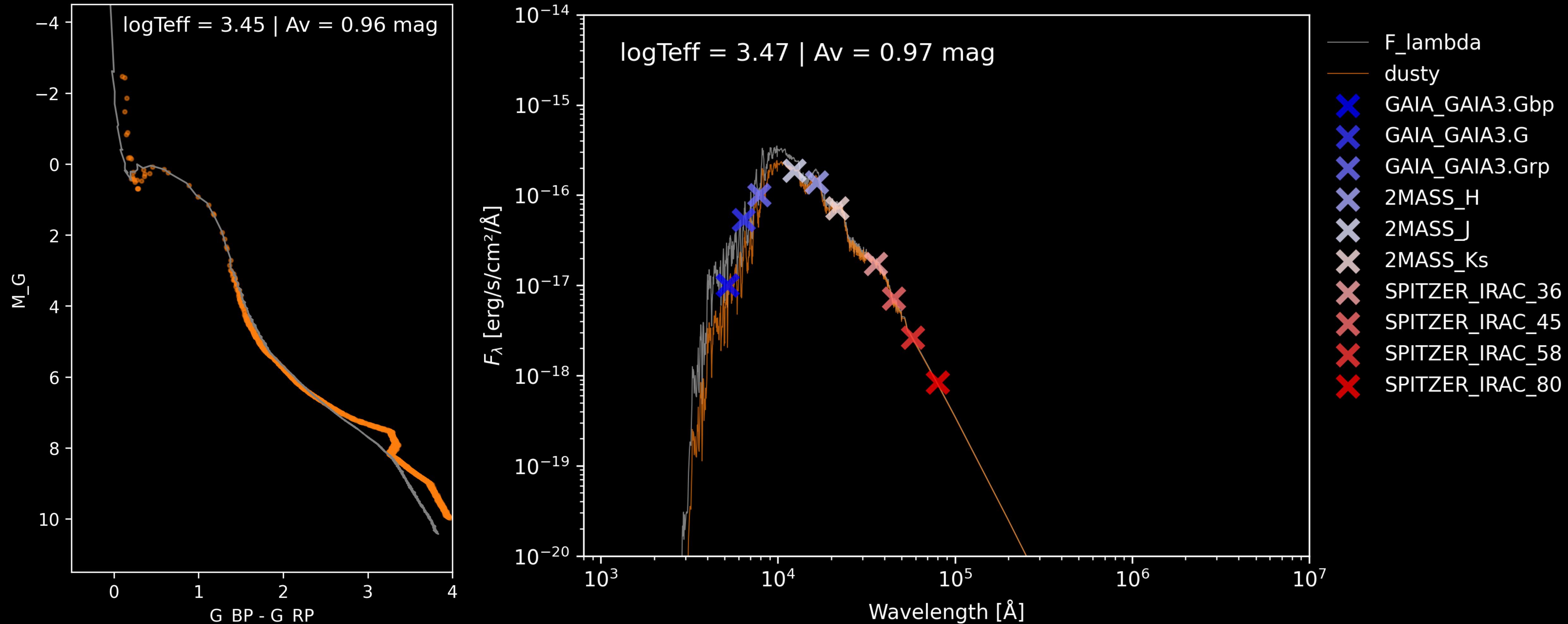
- BaSeL 2.2, ~Atlas 9 empirically recalibrated (Leujeune+1998)

Galaxy B ... “real”

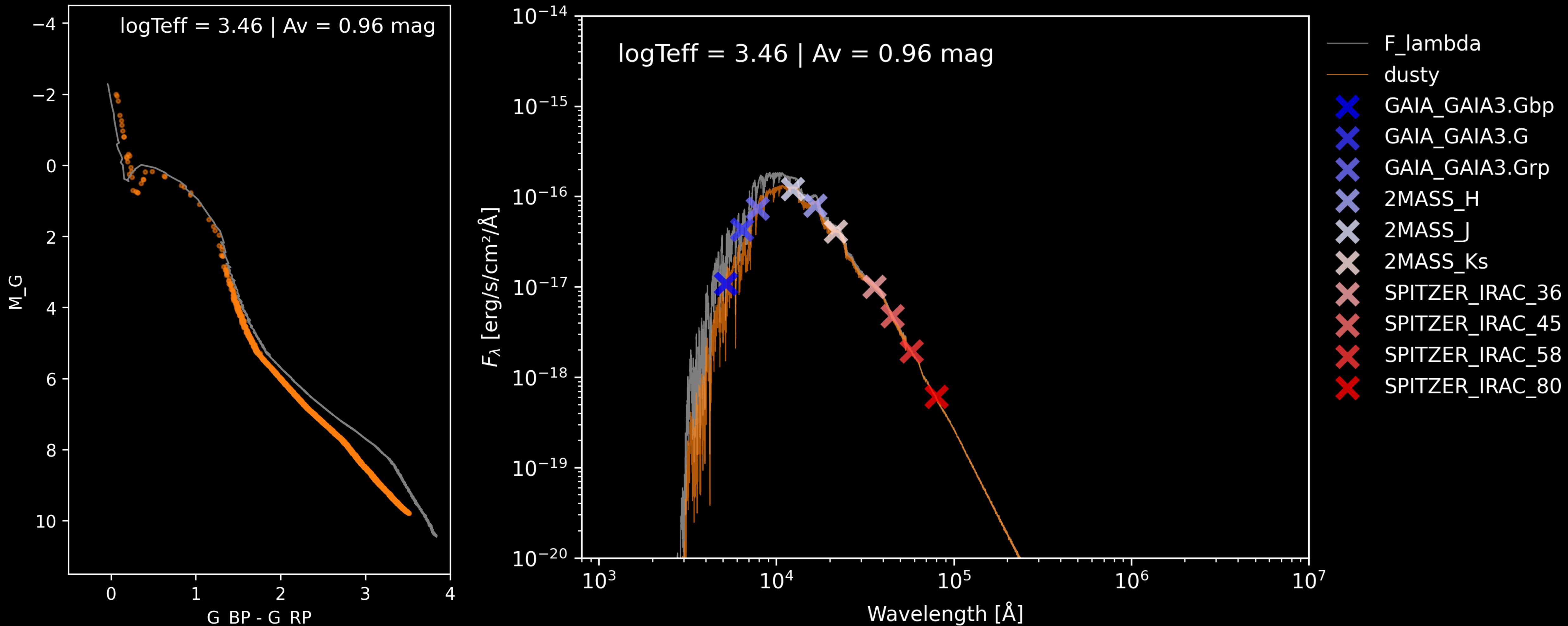
Synthetic spectra:

- BT-Settl Library (Allard, Hauschildt and Schweitzer 2000)

Model differences (BaSeL)

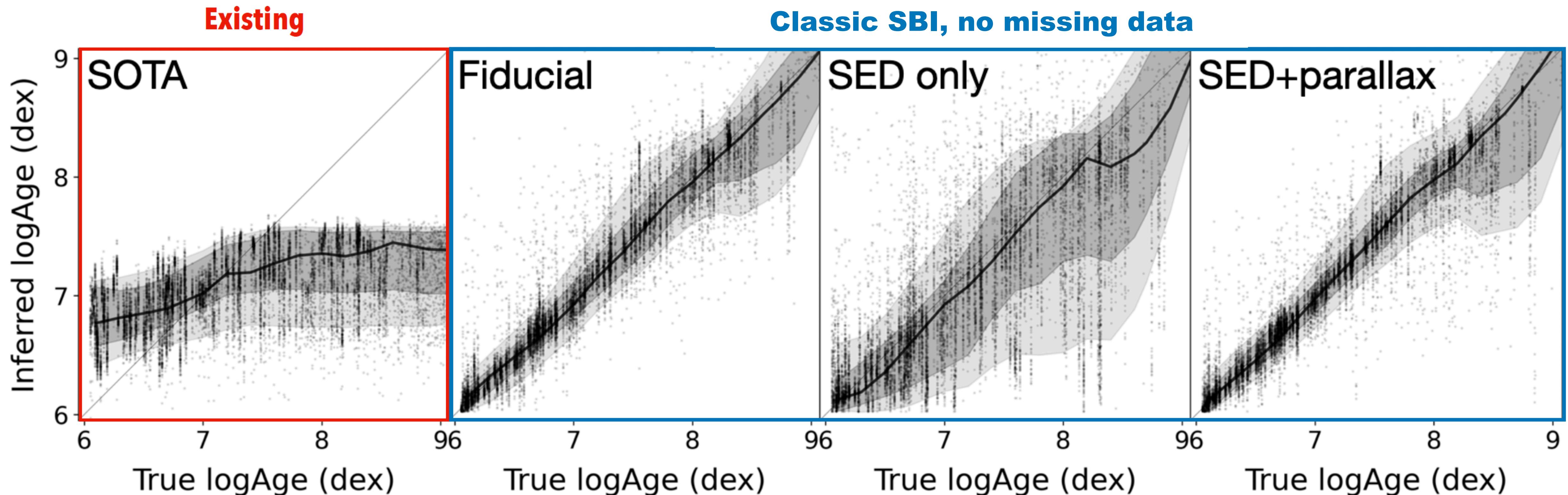


Model differences (BTSettl)

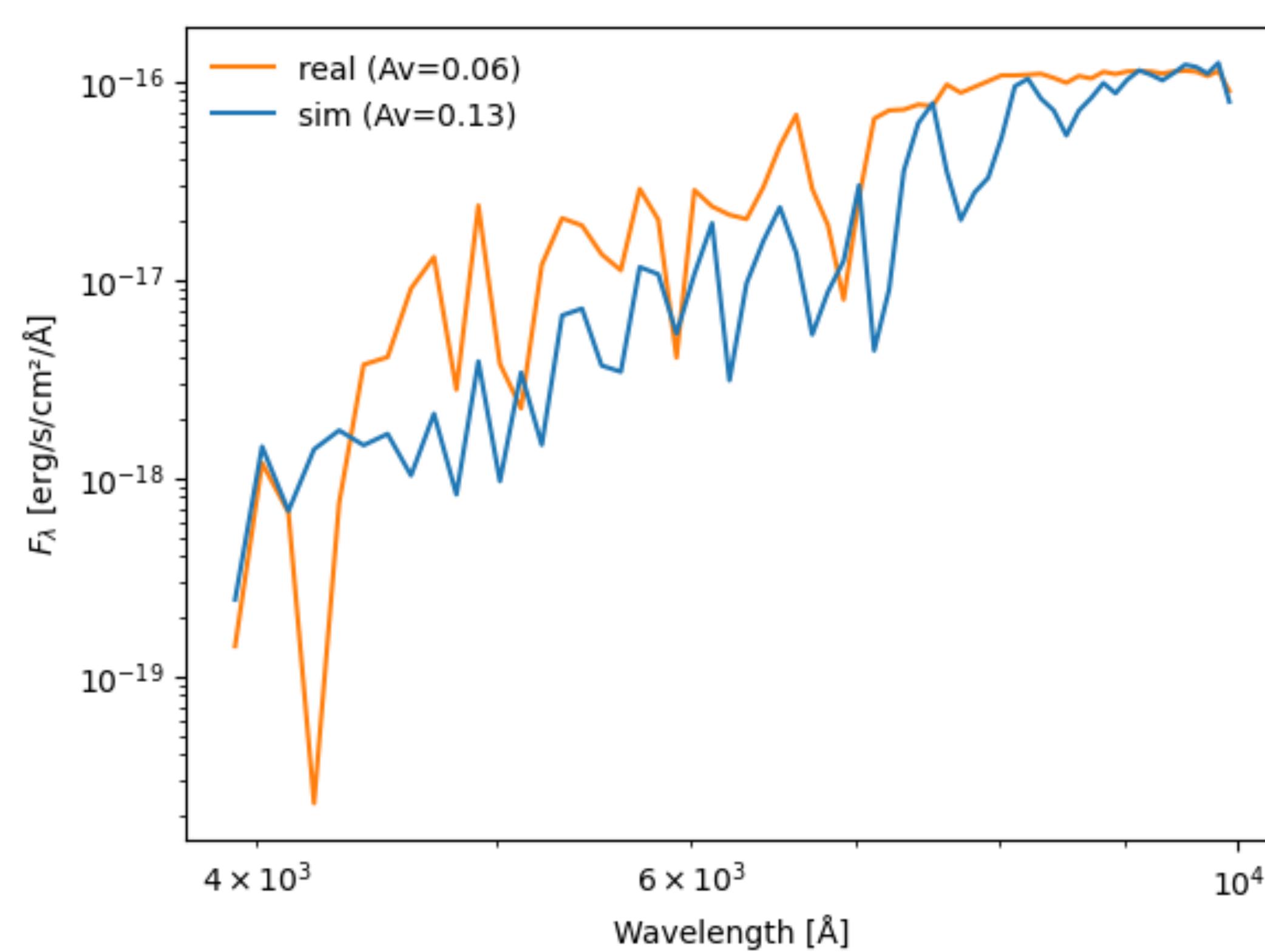


Results

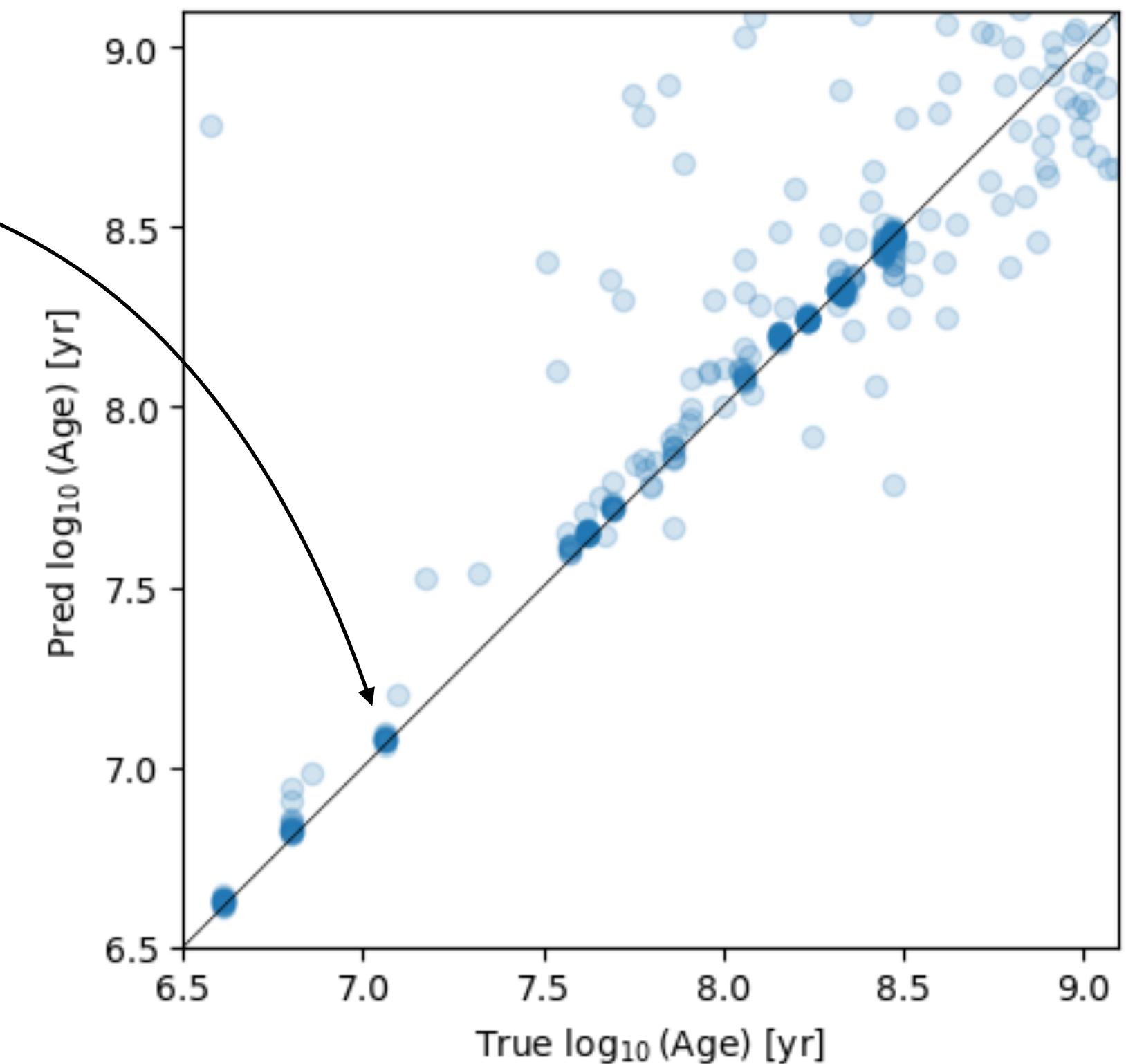
Pilot study: Gaia+2MASS+WISE



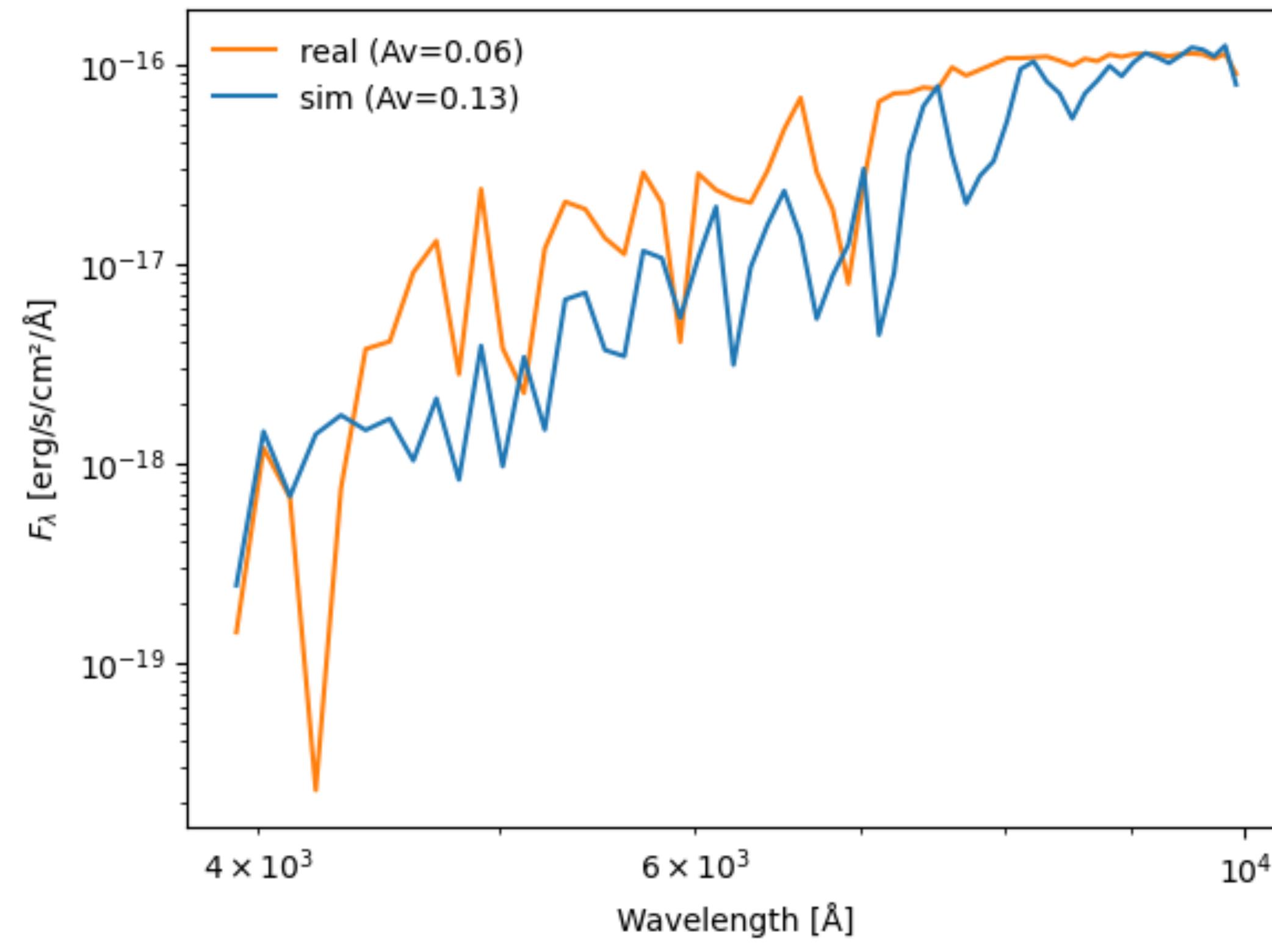
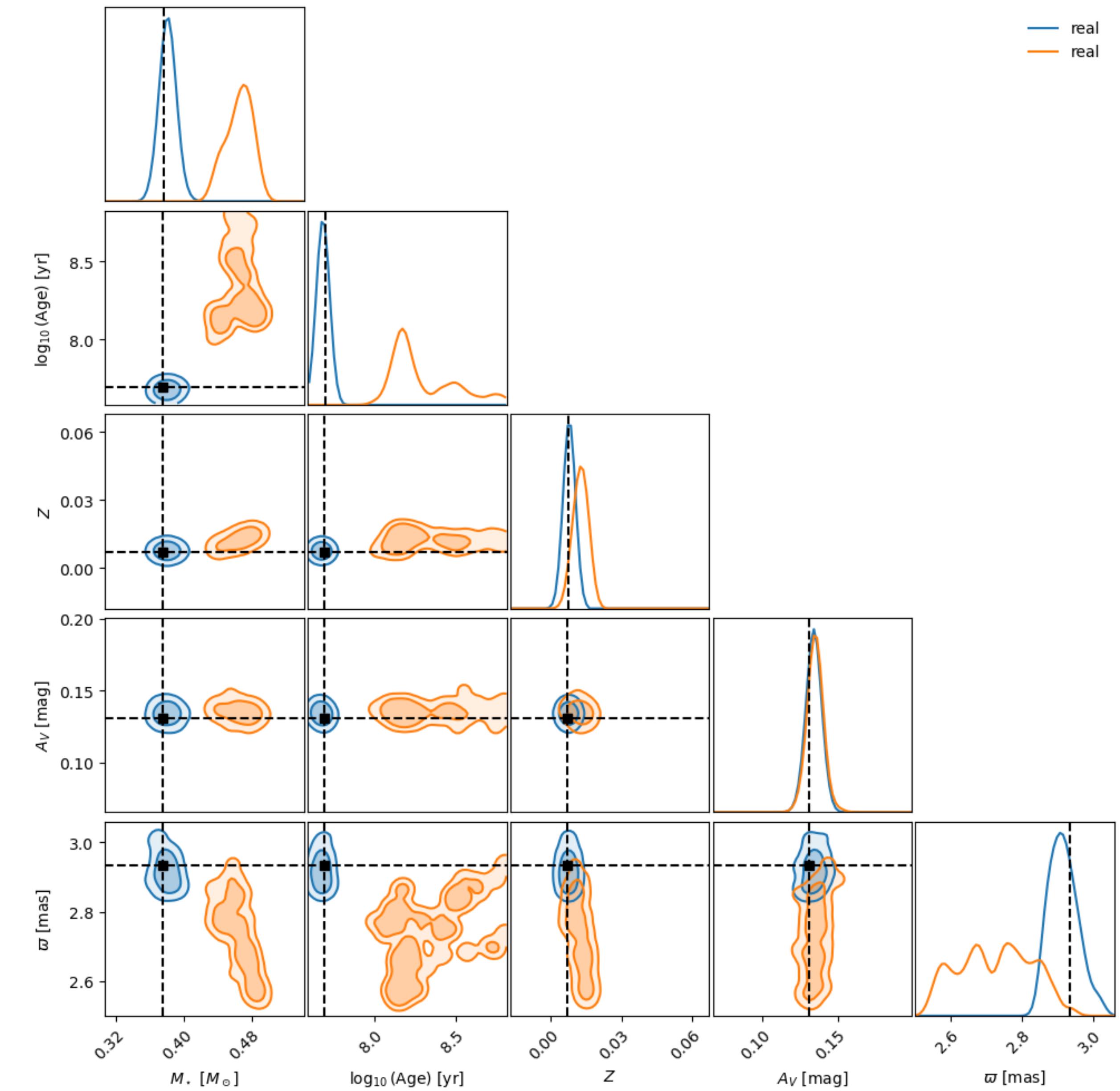
Updated pipeline + XP spectra



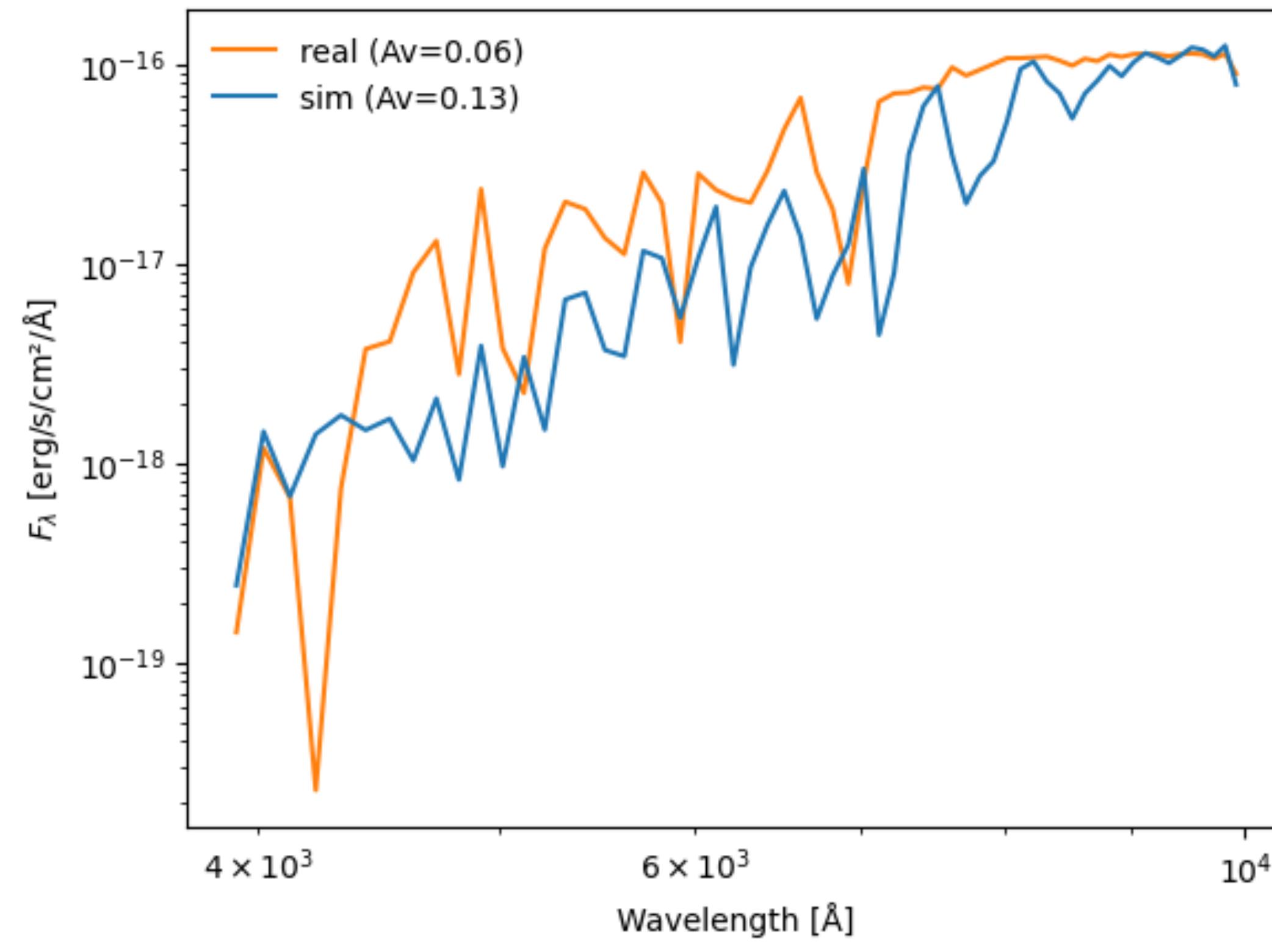
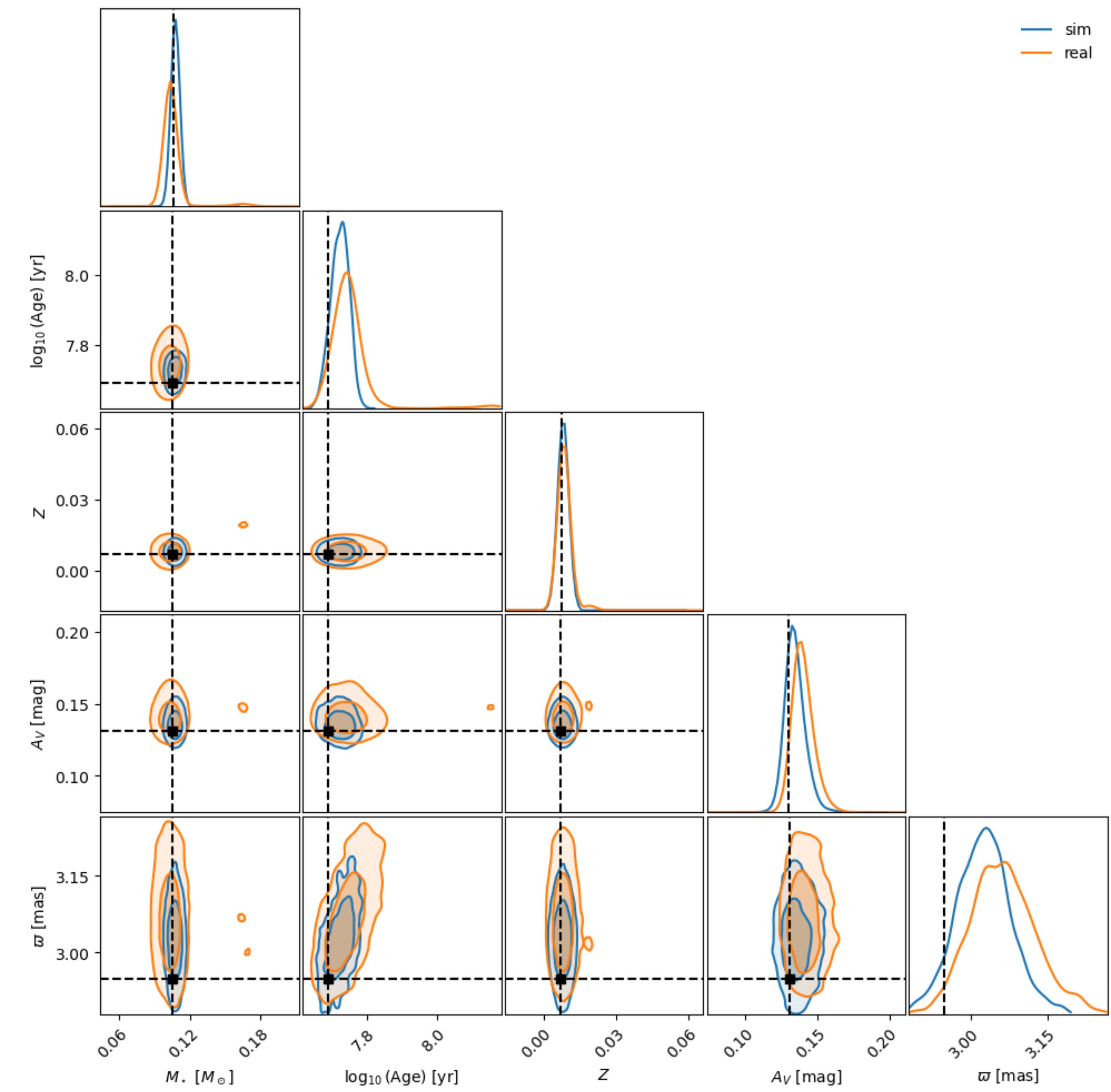
Posterior mean sim



Without DA

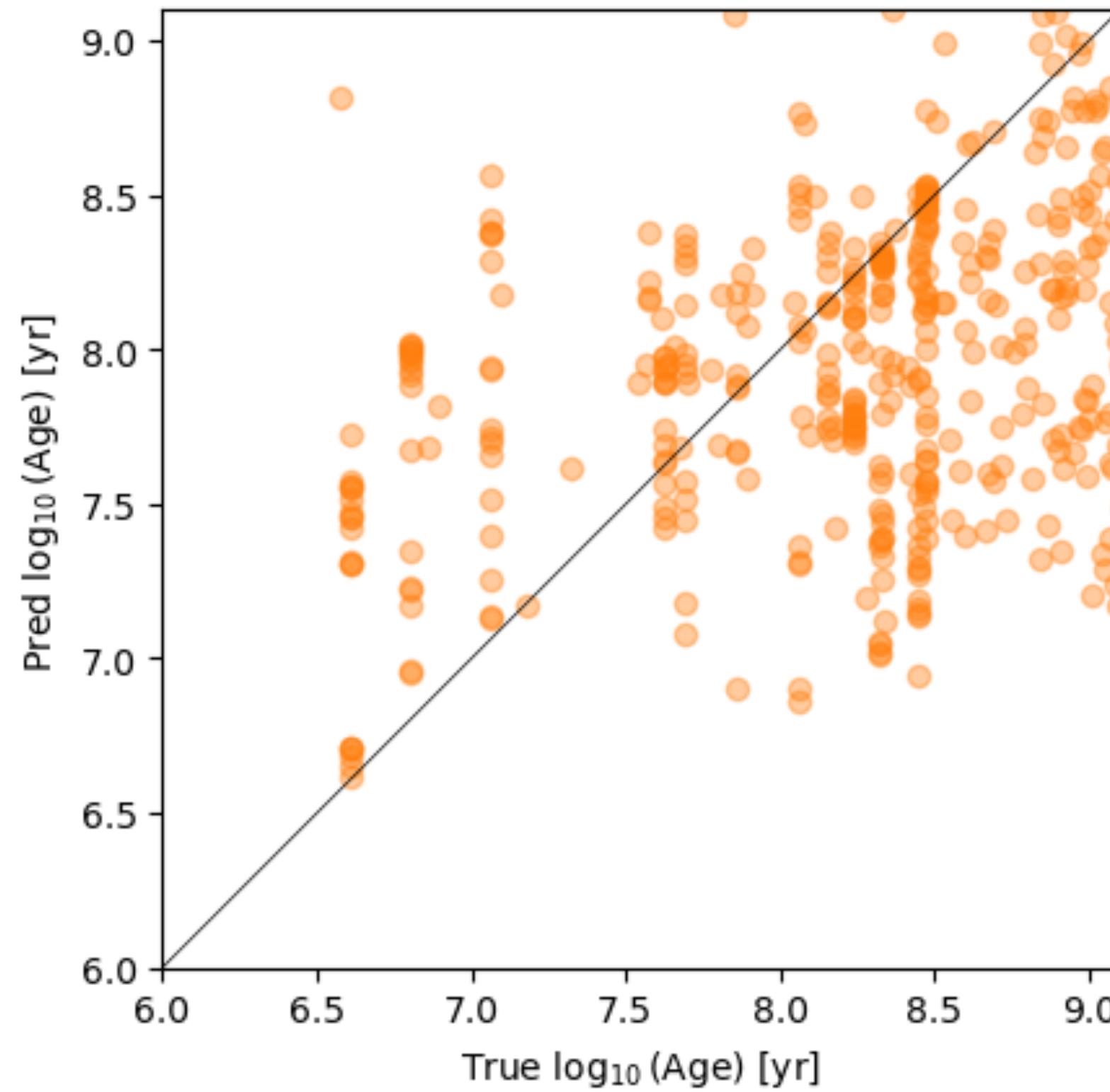


With DA

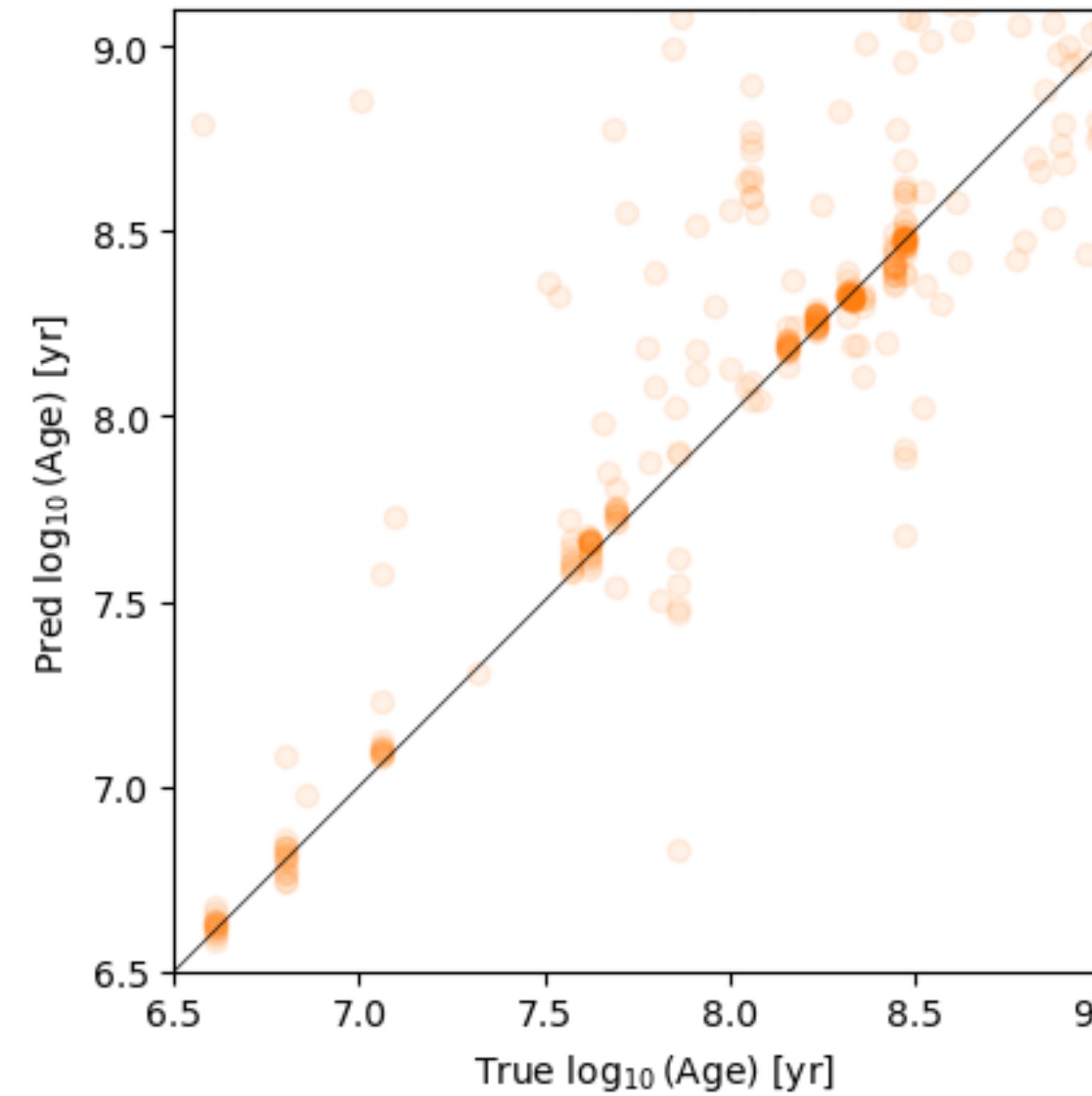


Predictions

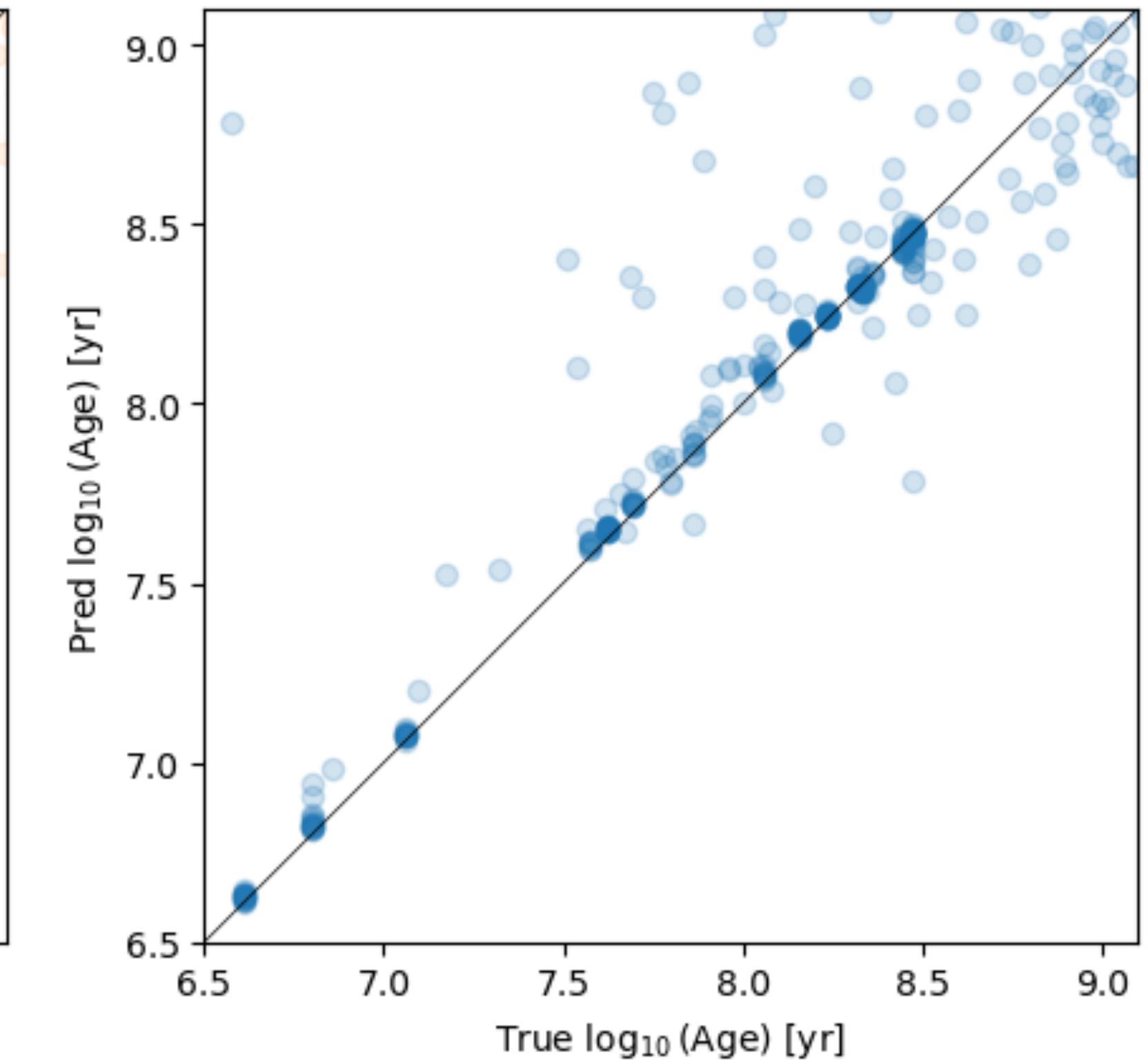
Posterior mean “real”



Posterior mean “real”



Posterior mean sim



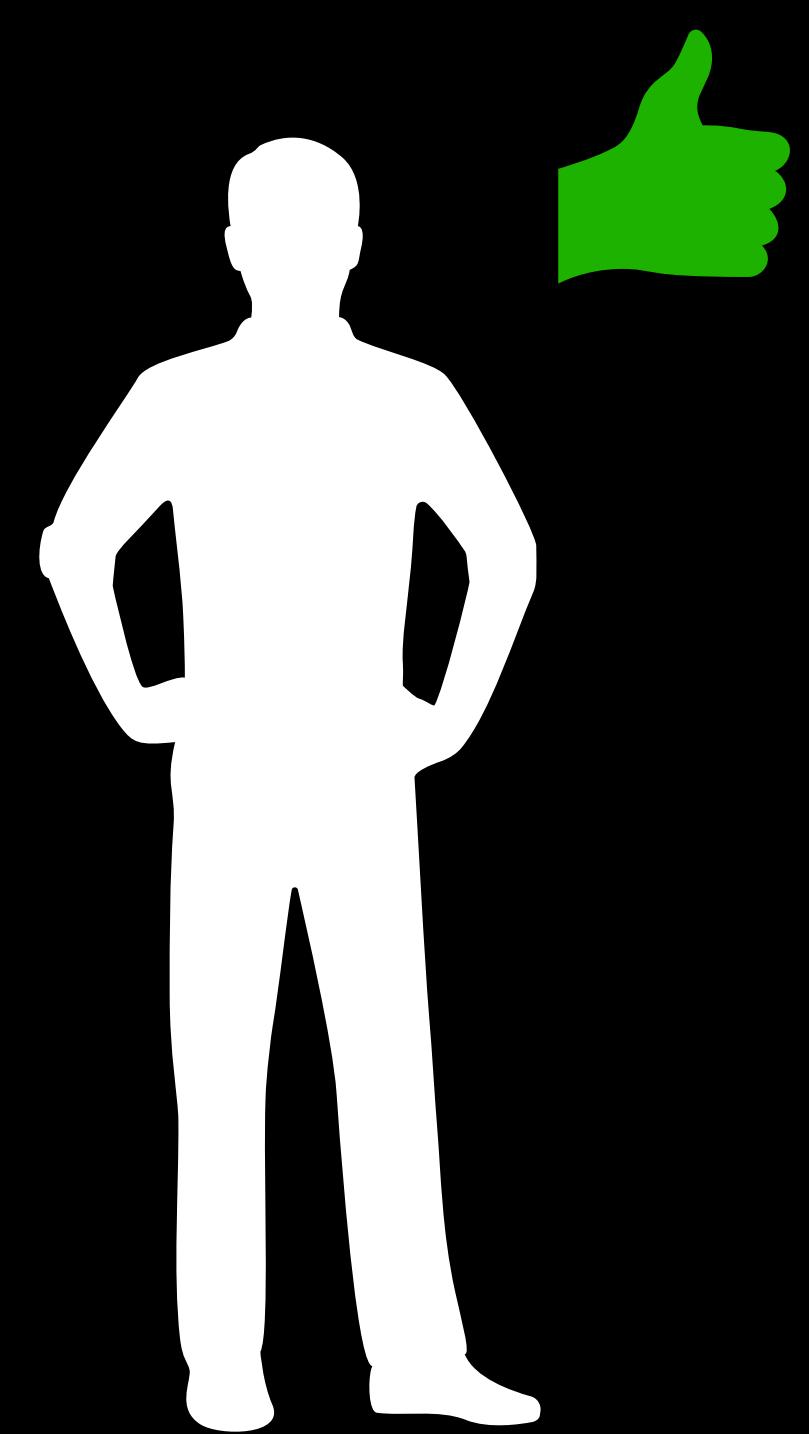
no domain adaption

with domain adaption

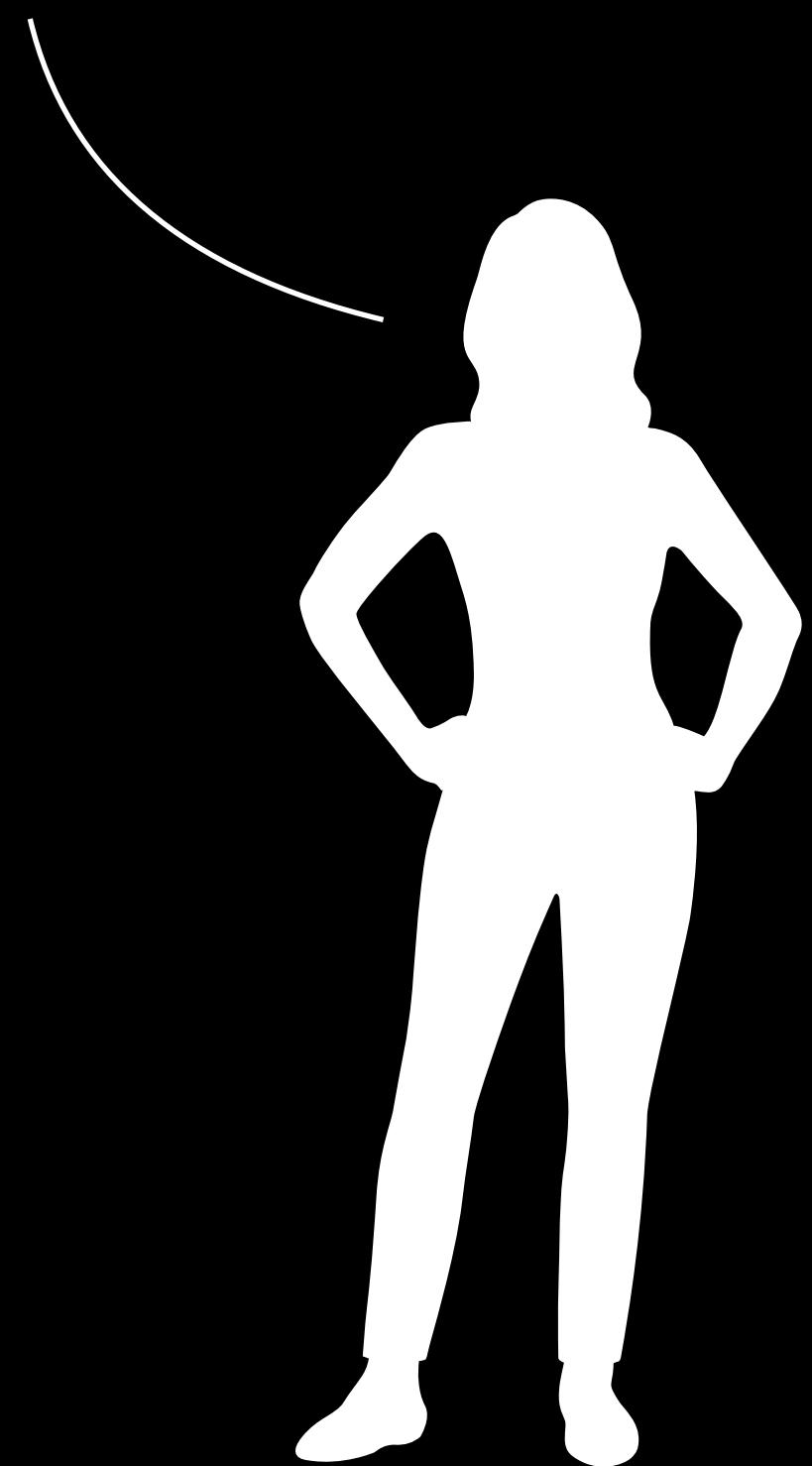
Summary

- Combine **flow matching models** + **transformer model** to learn arbitrary **conditionals** and **marginals**
- Add OT + pair loss to close domain gap
- Obtain promising results on simulations

Come find me



I want to know more!

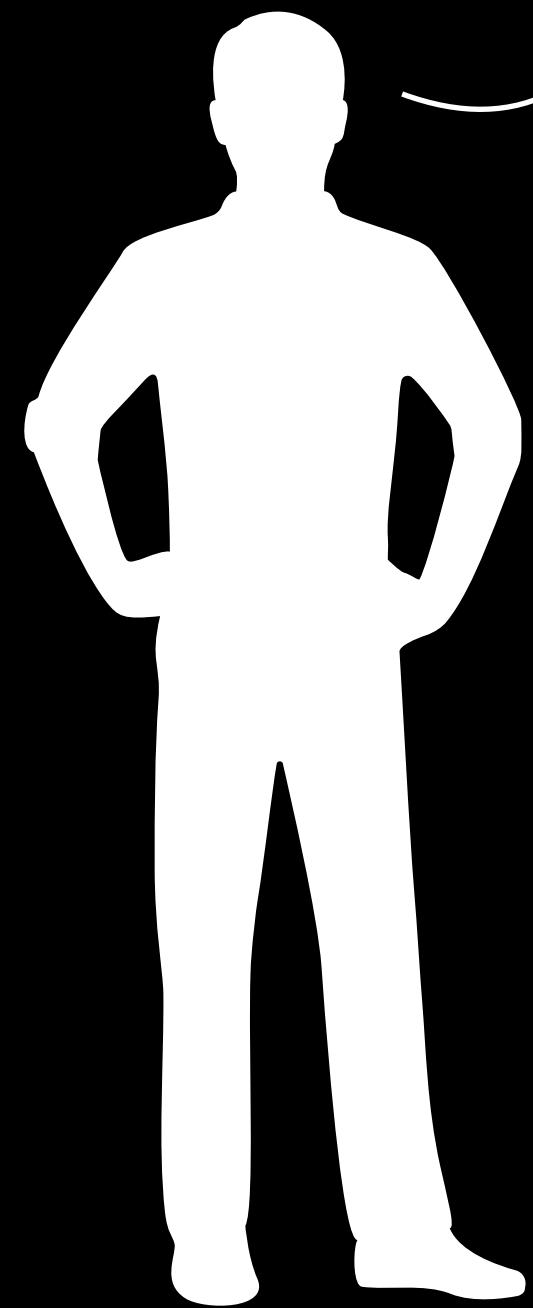


Come find me

I don't trust ML models!

Come find me

What would you need to see
(on sims) to trust them more?



I don't trust ML models!

Thank you!

Backup