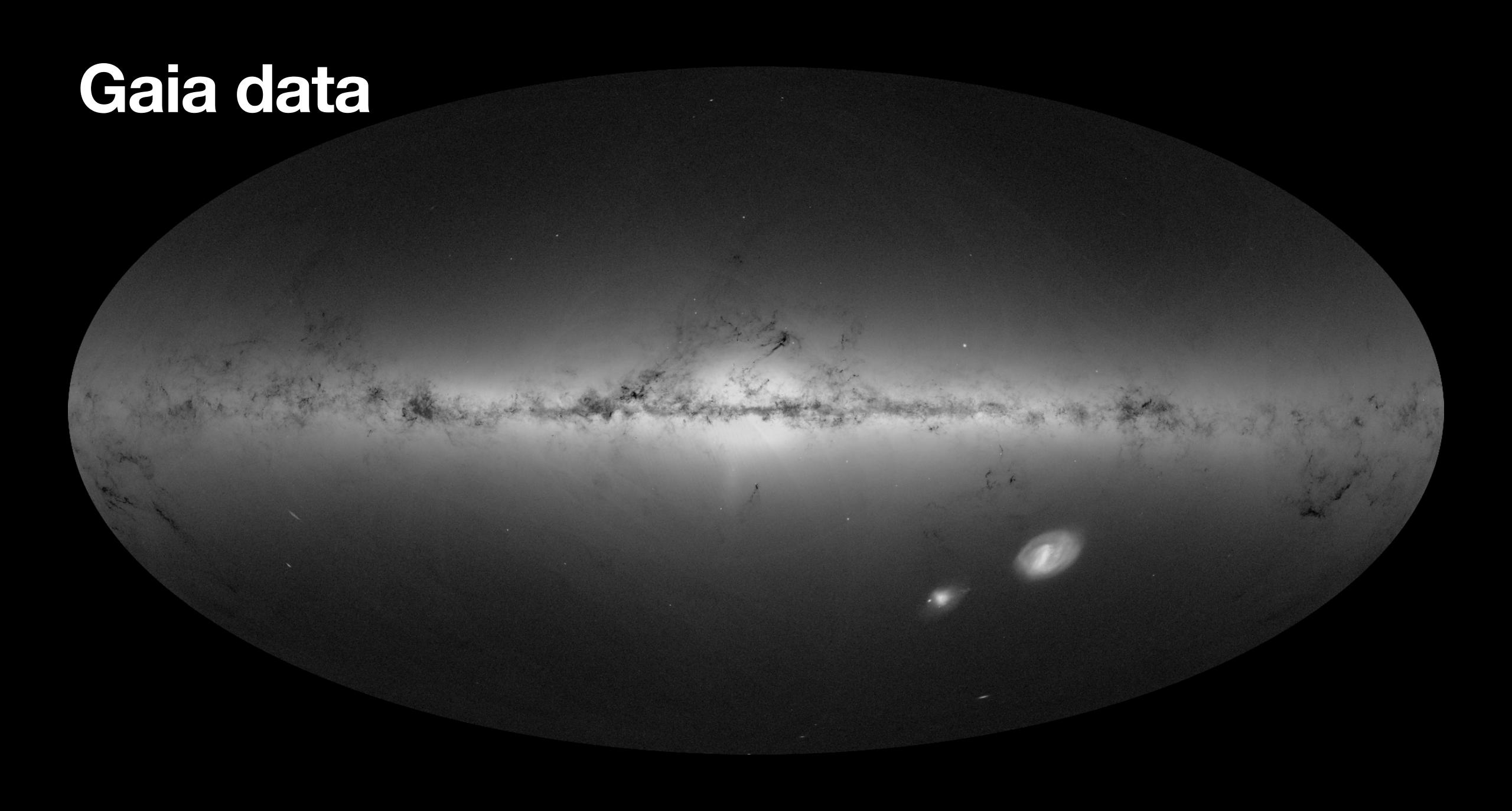
Significance Mode Analysis for hierarchical structures

Extracting stellar populations from large-scale surveys



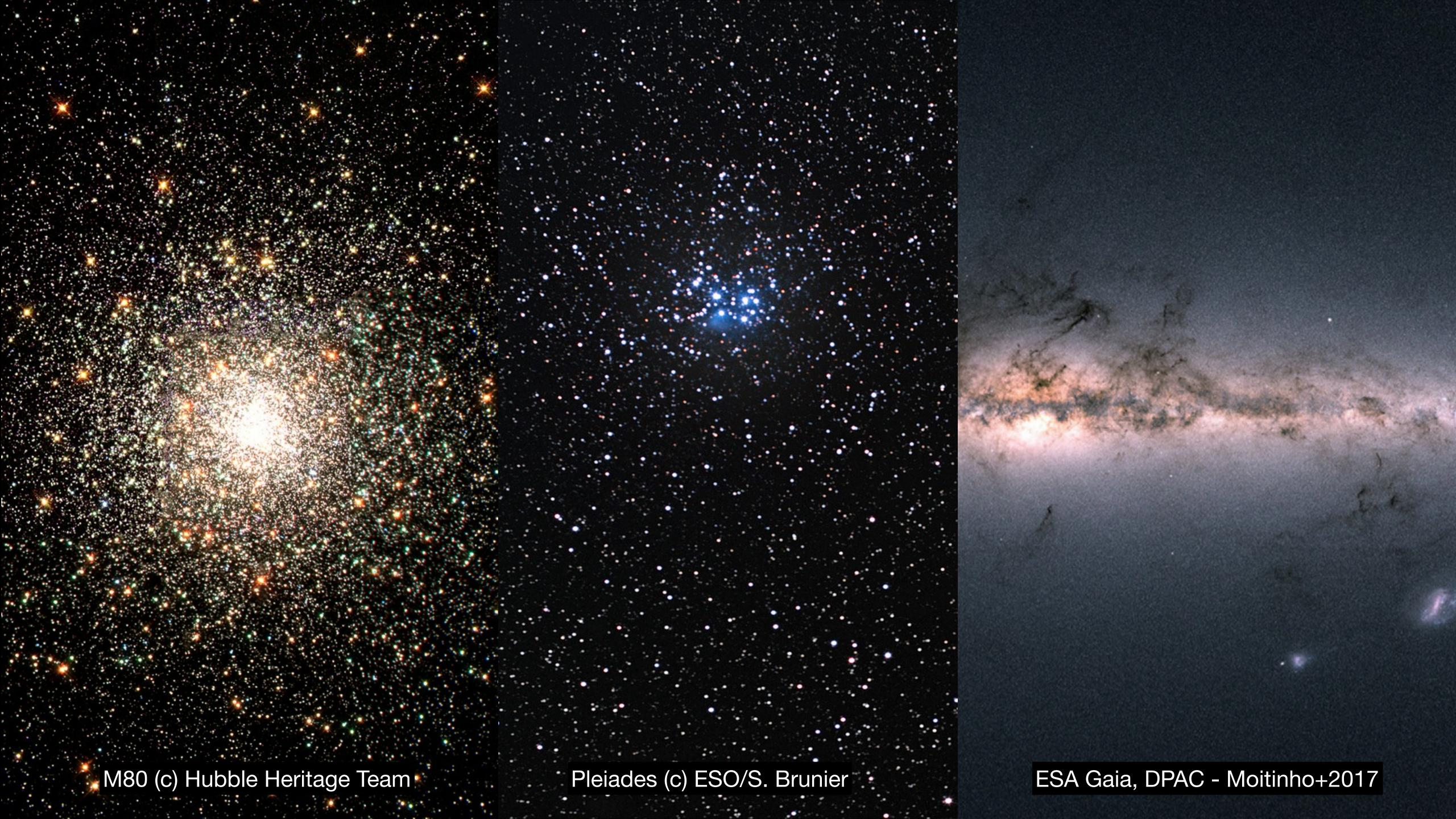
Stellar populations*

Born from same molecular cloud

- Thought to be birthplace of most stars (Lada & Lada 2003; Parker & Goodwin 2007)
- Structure formation and evolution
- Chemical composition of Milky Way
- Exoplanet formation and evolution
- Stellar initial mass function



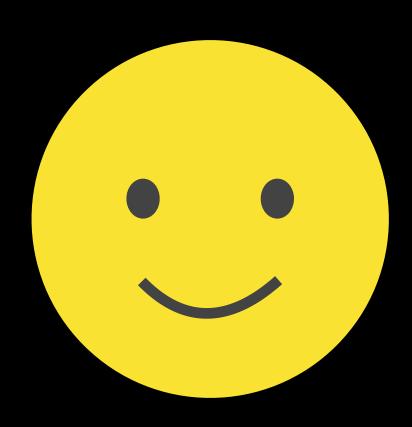
*stellar over-density over background



Low dimensional feature space

3 positional axes + 2 tangential velocities

Stars that move together were born together (Kamdar+2019)



- Low dimensional feature space
- Projection effects in velocities



- Low dimensional feature space
- Projection effects in velocities
- Millions to billions of data points

- Low dimensional feature space
- Projection effects in velocities
- Millions to billions of data points
- 95 99% noise

Identifying stellar populations

Problem definition

- Low dimensional feature space
- Projection effects in velocities
- Millions to billions of data points
- 95 99% noise

Tidal tails (Meingast+2019a), Streams (Meingast+2019b), Strings (Kounkel+2019),

Rings (Cantat-Gaudin+2019), Snakes (Tian+2020), Pearls (Coronado+2021), ...

Identifying stellar populations

- Low dimensional feature space
- Projection effects in velocities
- Millions to billions of data points
- 95 99% noise
- Wide variety of (non-convex) cluster morphologies
- No accurate simulations / forward models

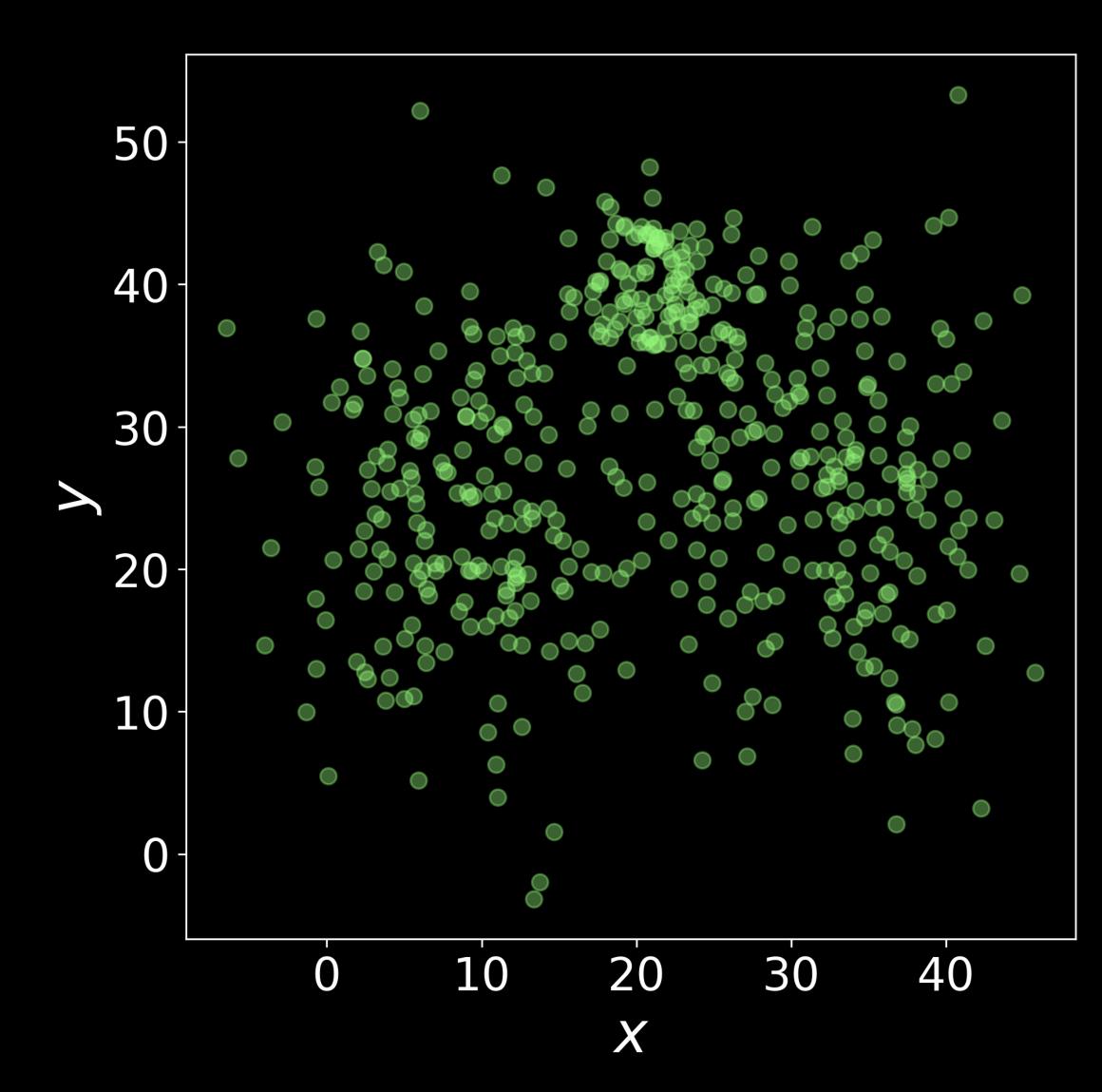
Identifying stellar populations

- Low dimensional feature space
- Projection effects in velocities
- Millions to billions of data points
- 95 99% noise
- Wide variety of (non-convex) cluster morphologies
- No accurate simulations / forward models

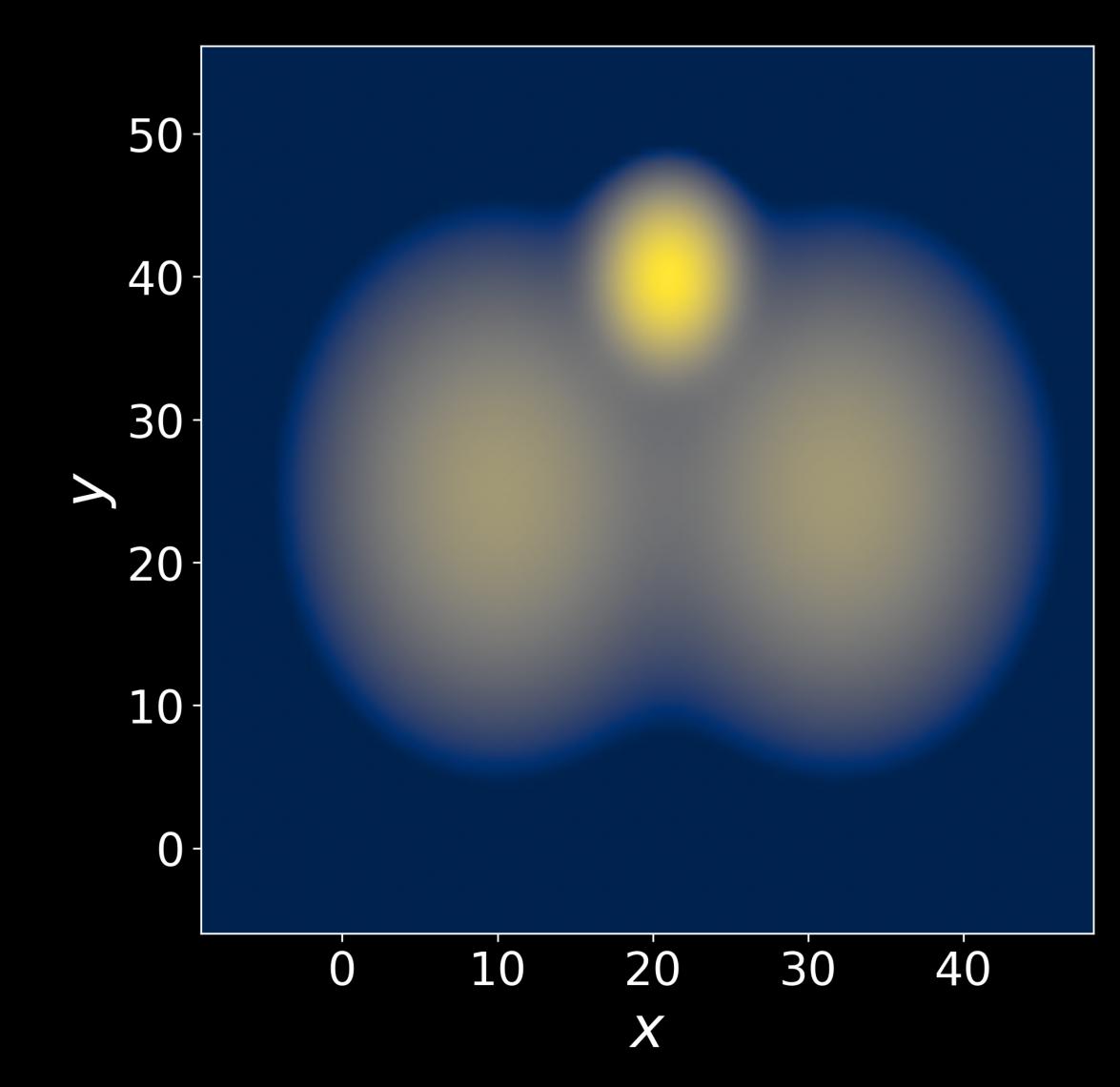
Recap: Density based clustering

Problem definition

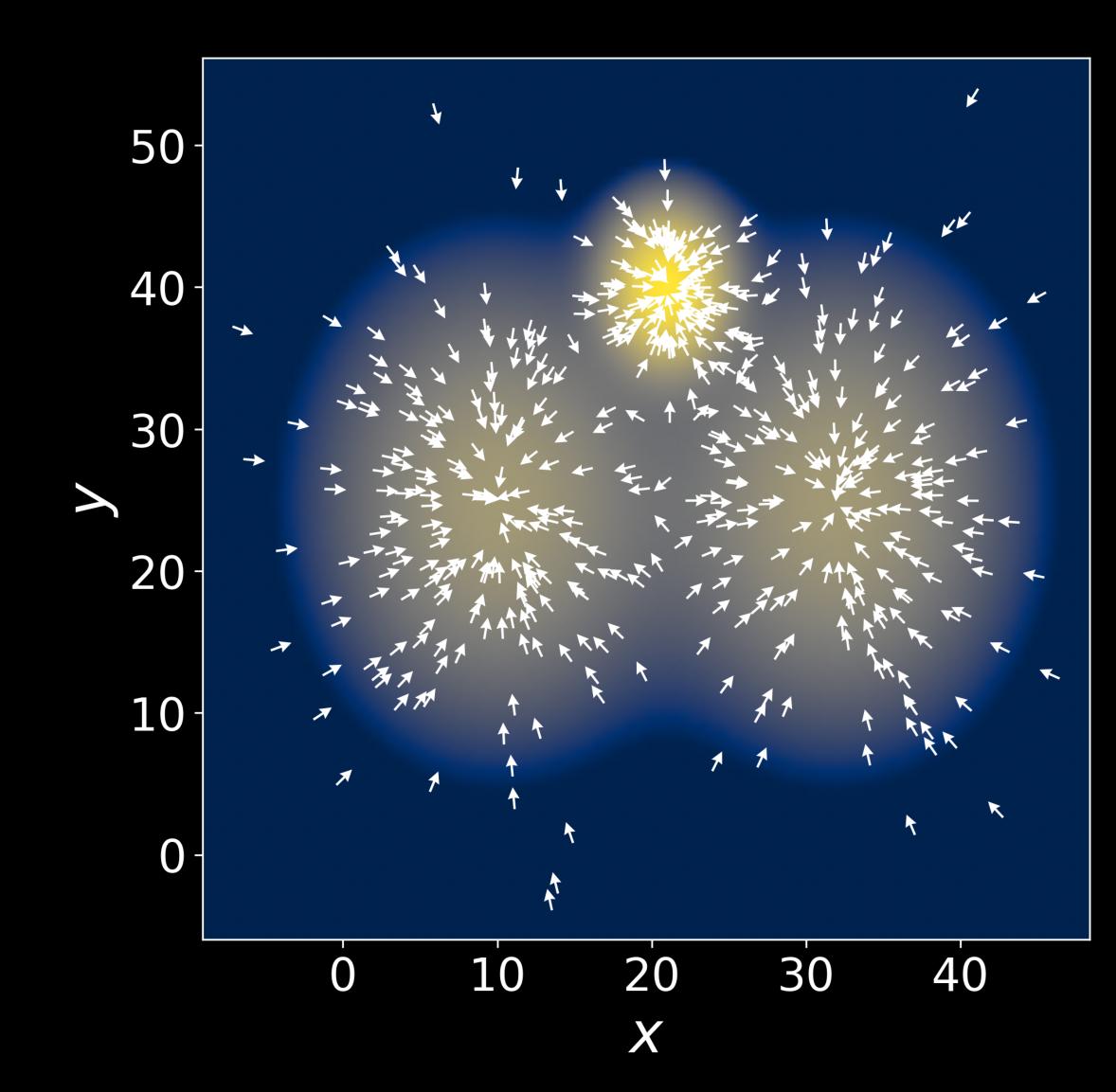
• Data set $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$



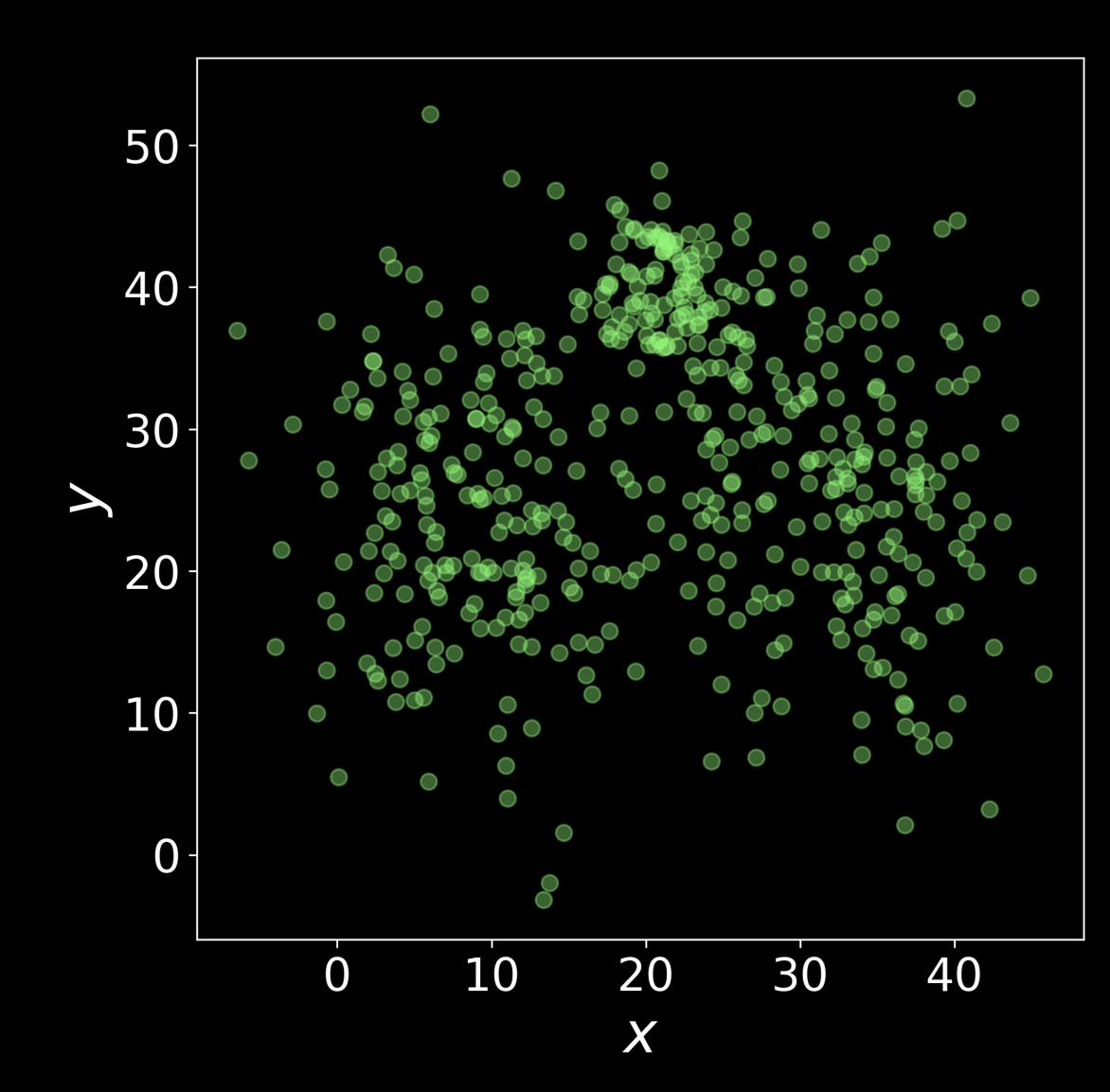
- Data set $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$
- Data generated from density: $X \sim f$



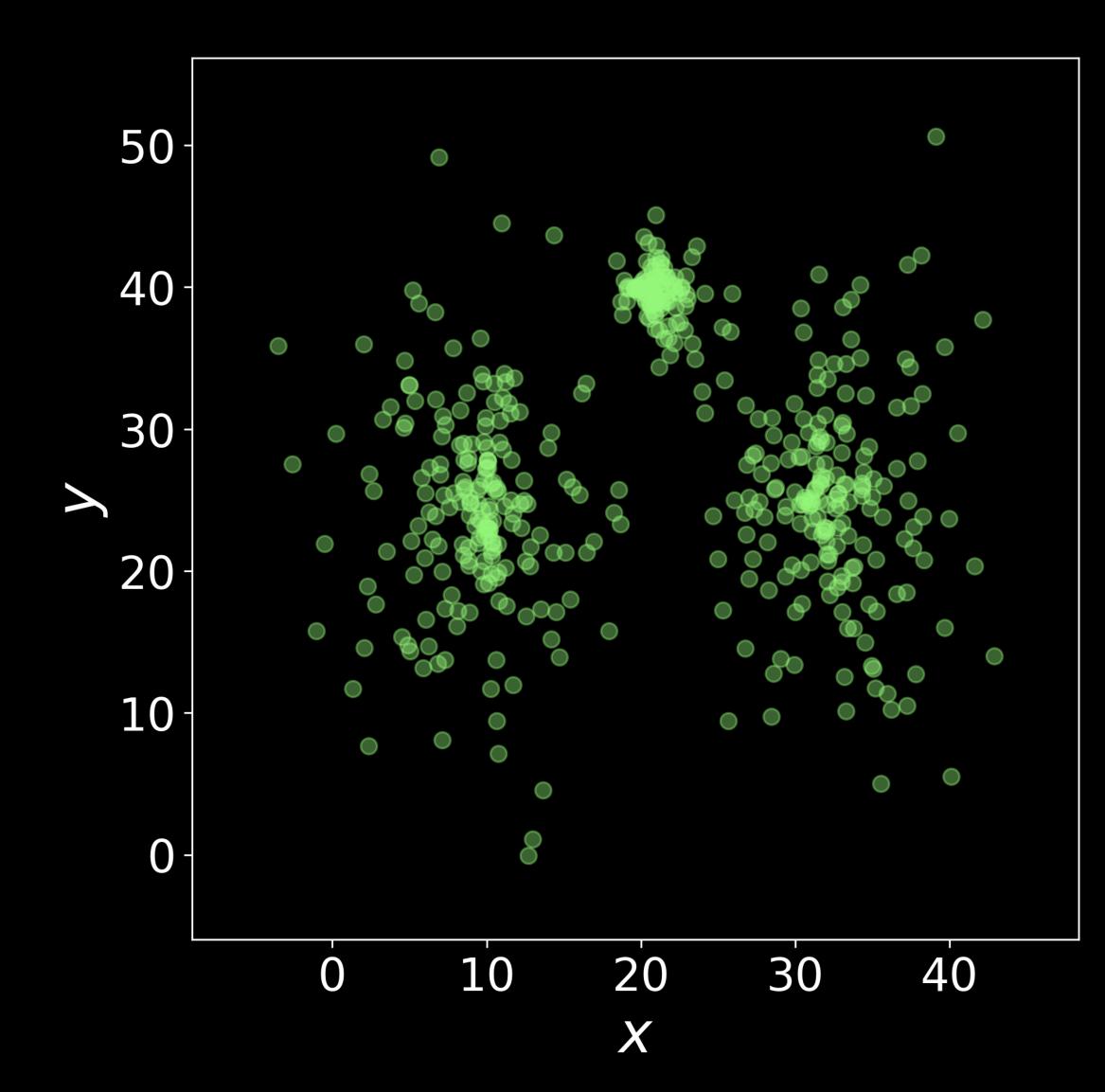
- Data set $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$
- Data generated from density: $X \sim f$
- Wishart (1969) cluster definition
 - $ightharpoonup \mathbf{X}_i$ associated with modes of f
 - Propagate \mathbf{x}_i along ∇f



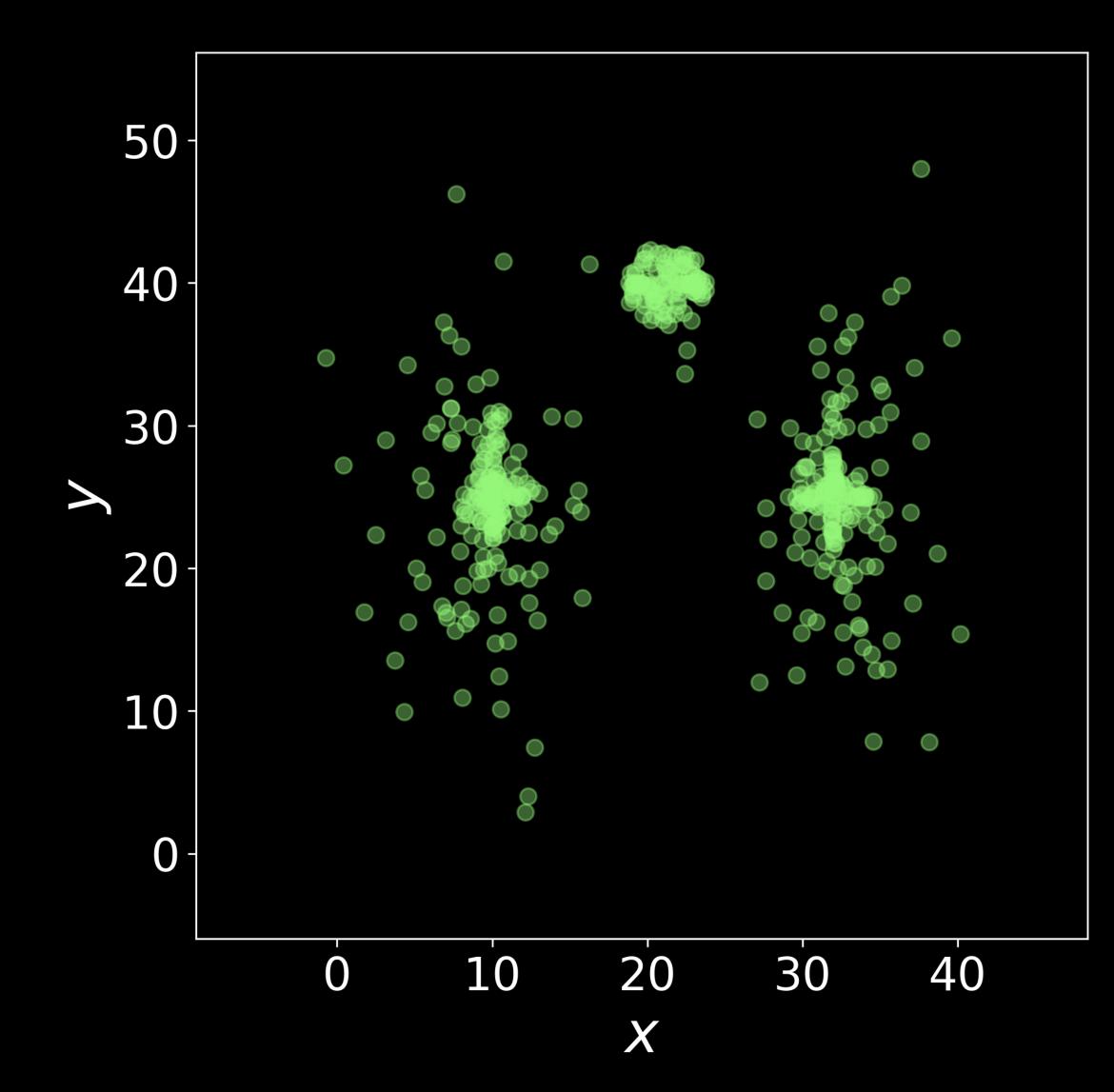
- Data set $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$
- Data generated from density: $X \sim f$
- Wishart (1969) cluster definition
 - $ightharpoonup \mathbf{X}_i$ associated with modes of f
 - Propagate \mathbf{x}_i along ∇f



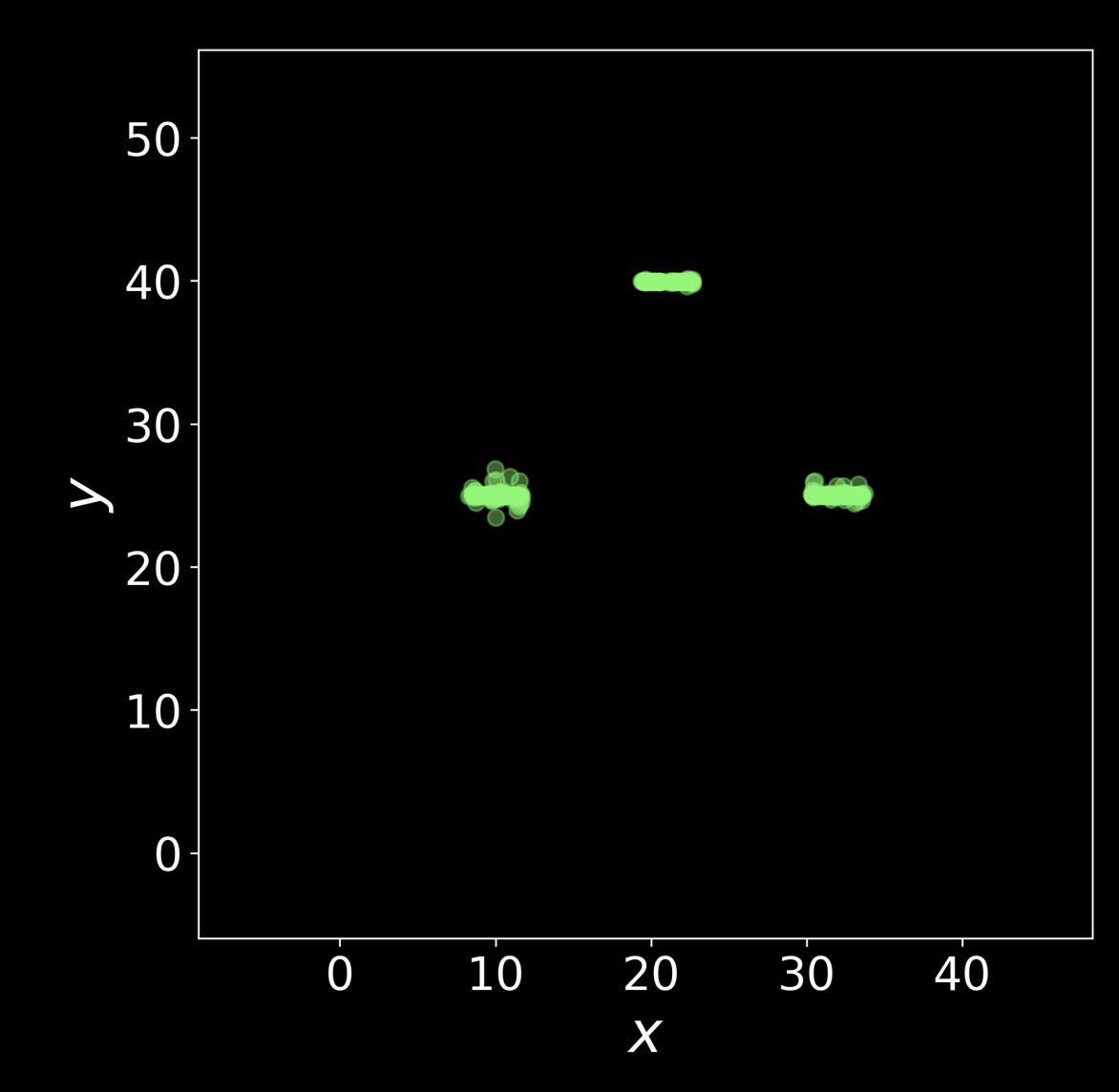
- Data set $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$
- Data generated from density: $X \sim f$
- Wishart (1969) cluster definition
 - $ightharpoonup \mathbf{X}_i$ associated with modes of f
 - Propagate \mathbf{x}_i along ∇f



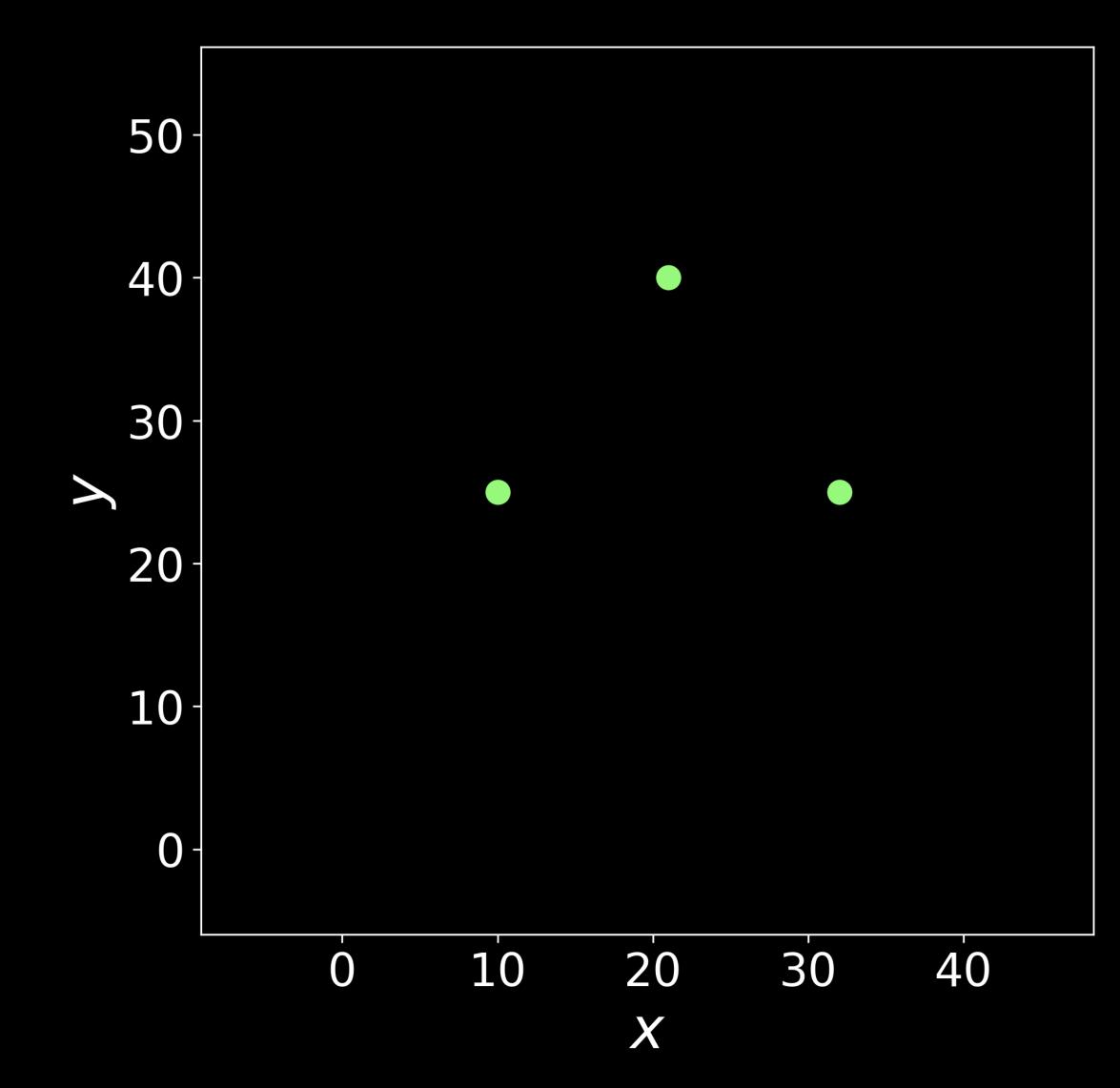
- Data set $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$
- Data generated from density: $X \sim f$
- Wishart (1969) cluster definition
 - $ightharpoonup \mathbf{X}_i$ associated with modes of f
 - Propagate \mathbf{x}_i along ∇f



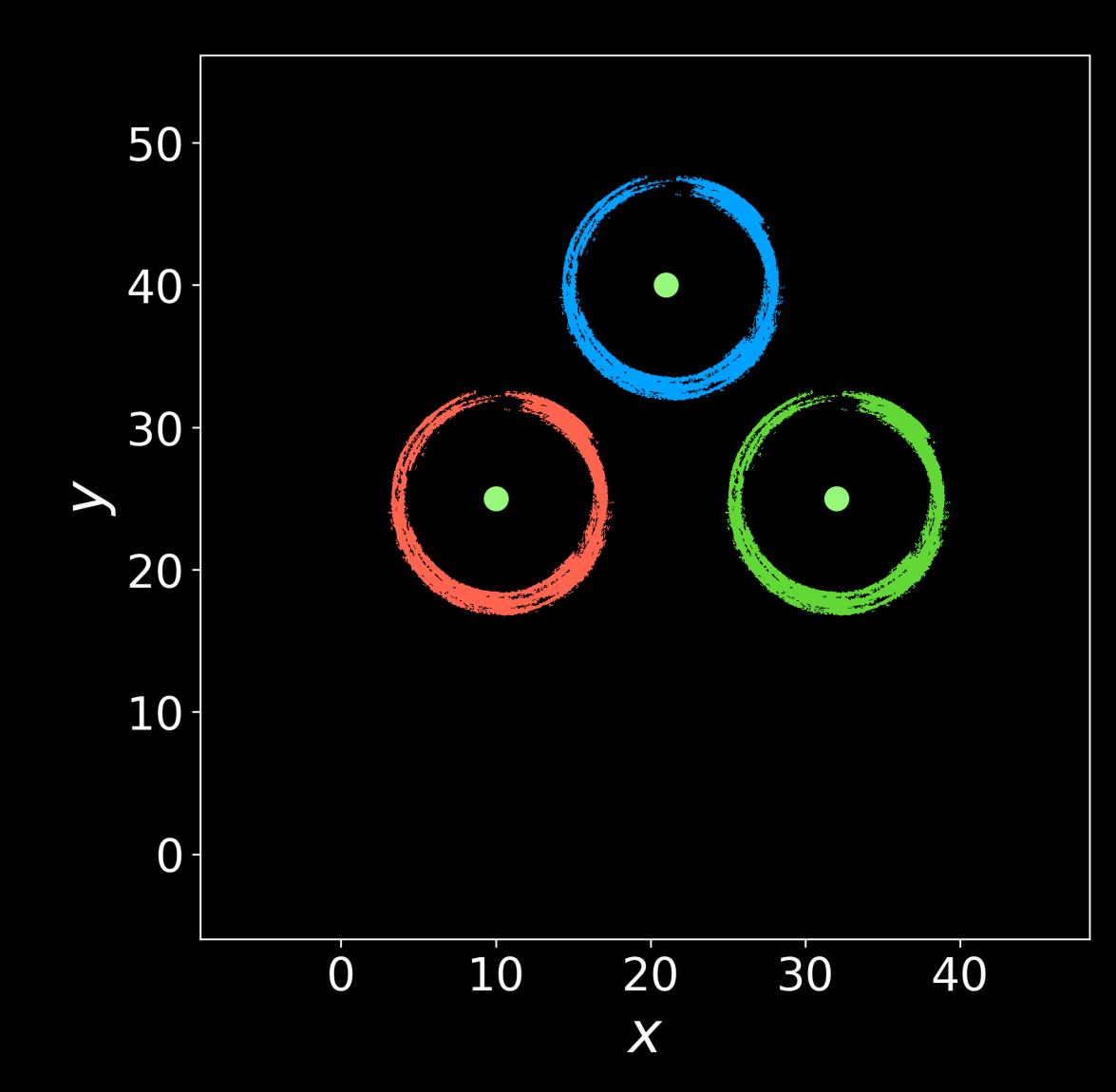
- Data set $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$
- Data generated from density: $X \sim f$
- Wishart (1969) cluster definition
 - $ightharpoonup {f X}_i$ associated with modes of f
 - Propagate \mathbf{x}_i along ∇f



- Data set $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$
- Data generated from density: $X \sim f$
- Wishart (1969) cluster definition
 - $ightharpoonup {f X}_i$ associated with modes of f
 - Propagate \mathbf{x}_i along ∇f



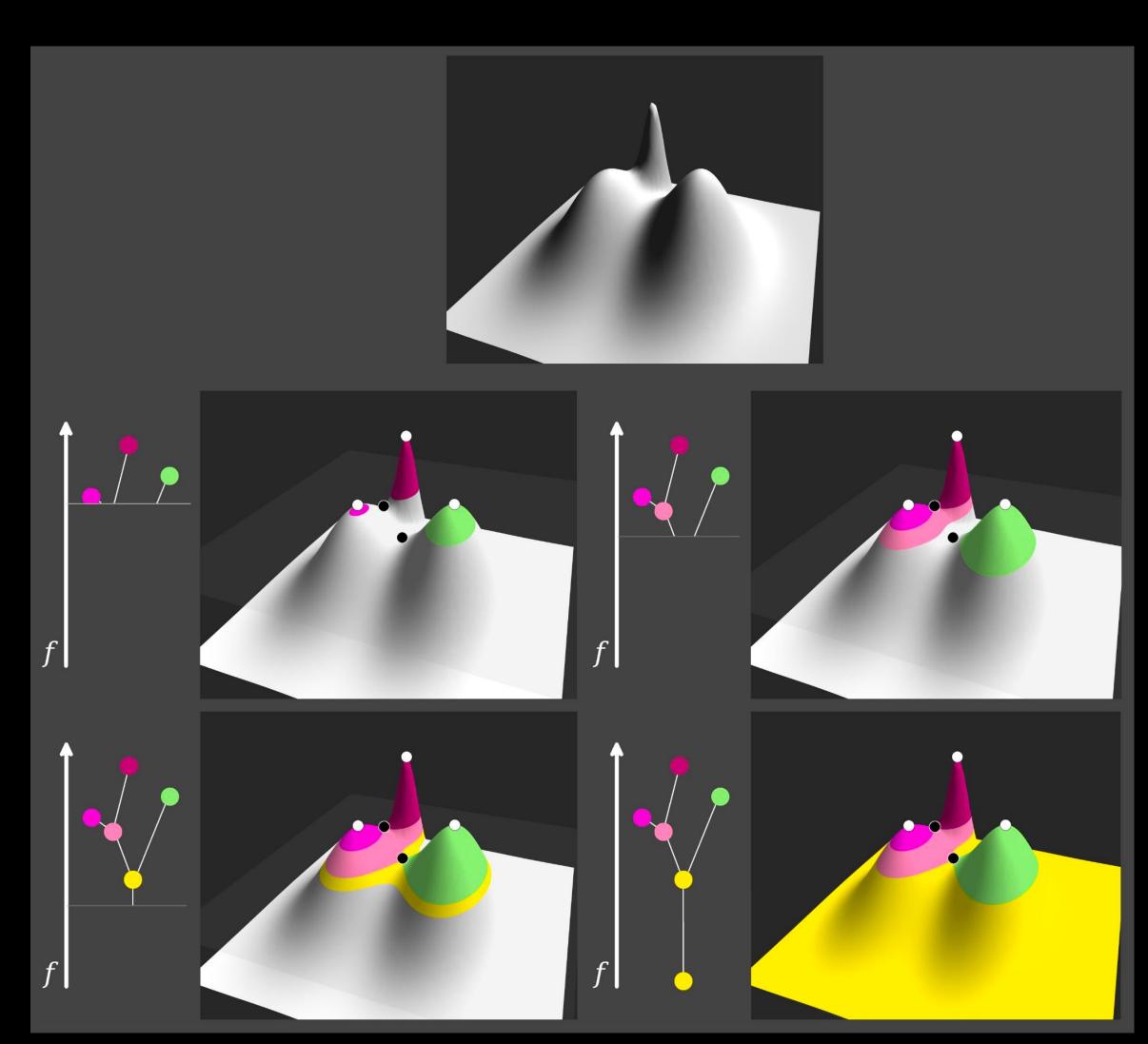
- Data set $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$
- Data generated from density: $X \sim f$
- Wishart (1969) cluster definition
 - $ightharpoonup \mathbf{X}_i$ associated with modes of f
 - Propagate \mathbf{x}_i along ∇f



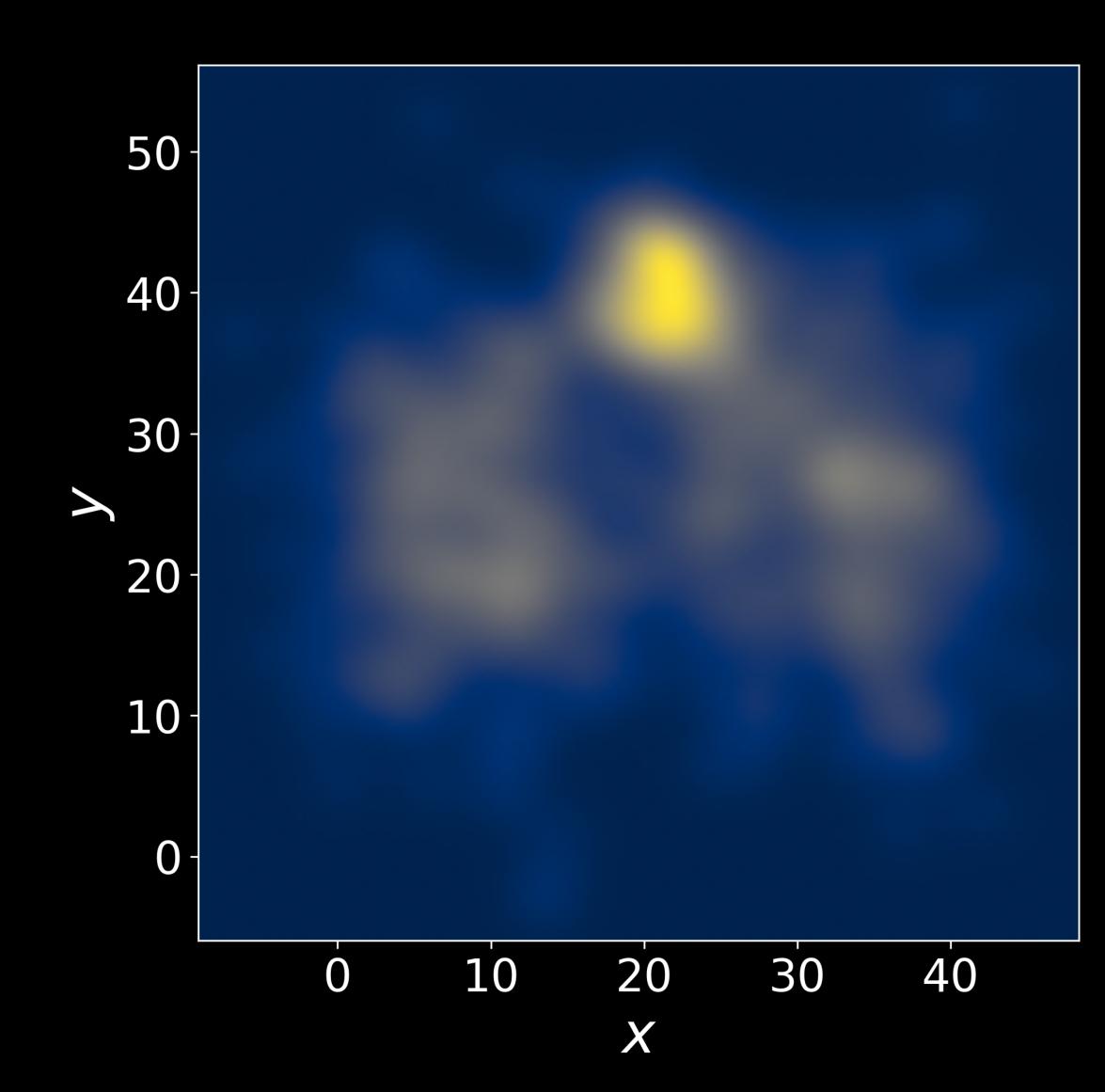
- Data set $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$
- Data generated from density: $X \sim f$
- Wishart (1969) cluster definition
 - $ightharpoonup \mathbf{X}_i$ associated with modes of f
 - Propagate \mathbf{x}_i along ∇f



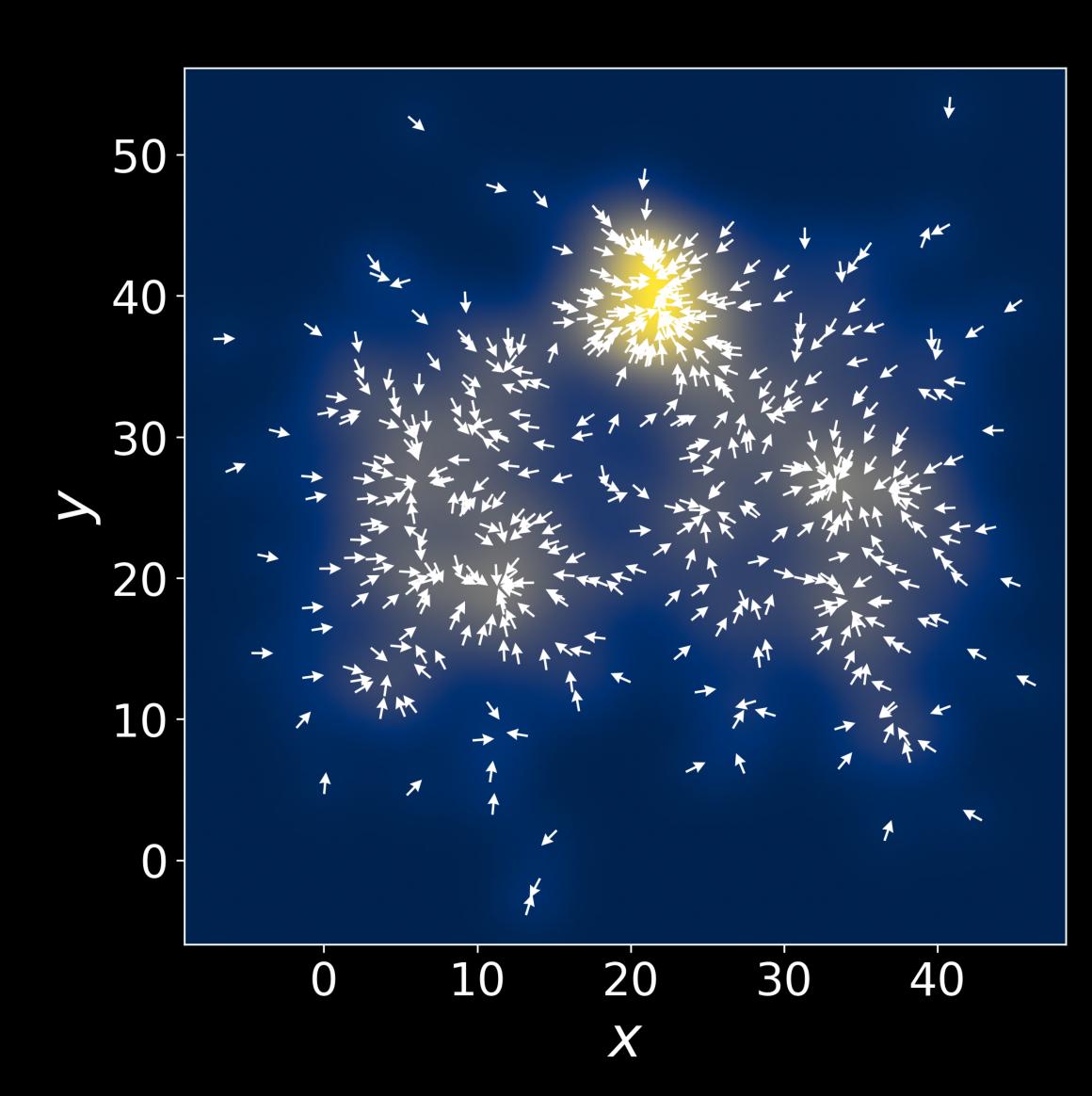
- Level set: $L(\lambda) = \{f(\mathbf{x}) \ge \lambda\}$
- Hartigan (1975) cluster definition
 - Connected components of $L(\lambda)$
 - ► Cluster tree: vary λ : $\infty \rightarrow -\infty$



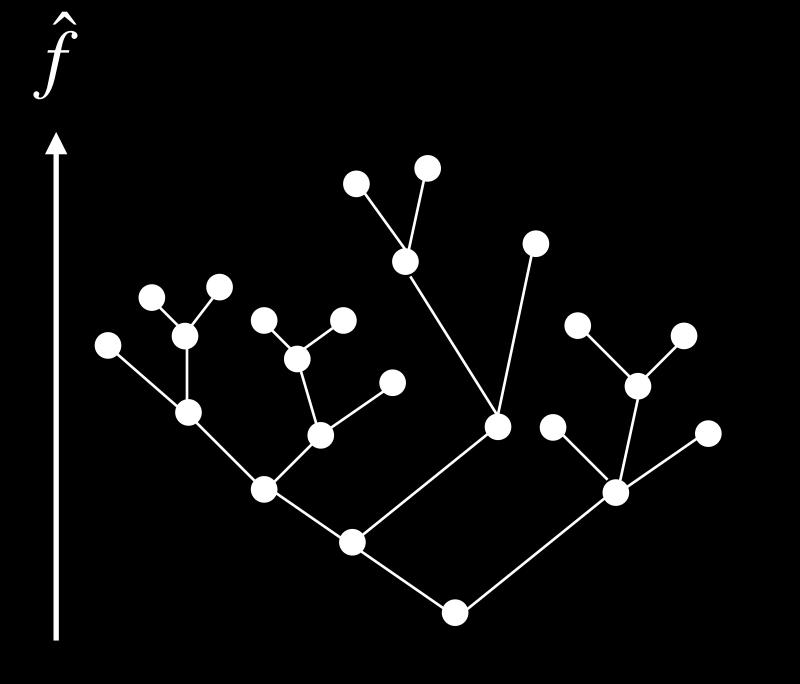
- Estimate density \hat{f} from data X
- produces spurious clusters

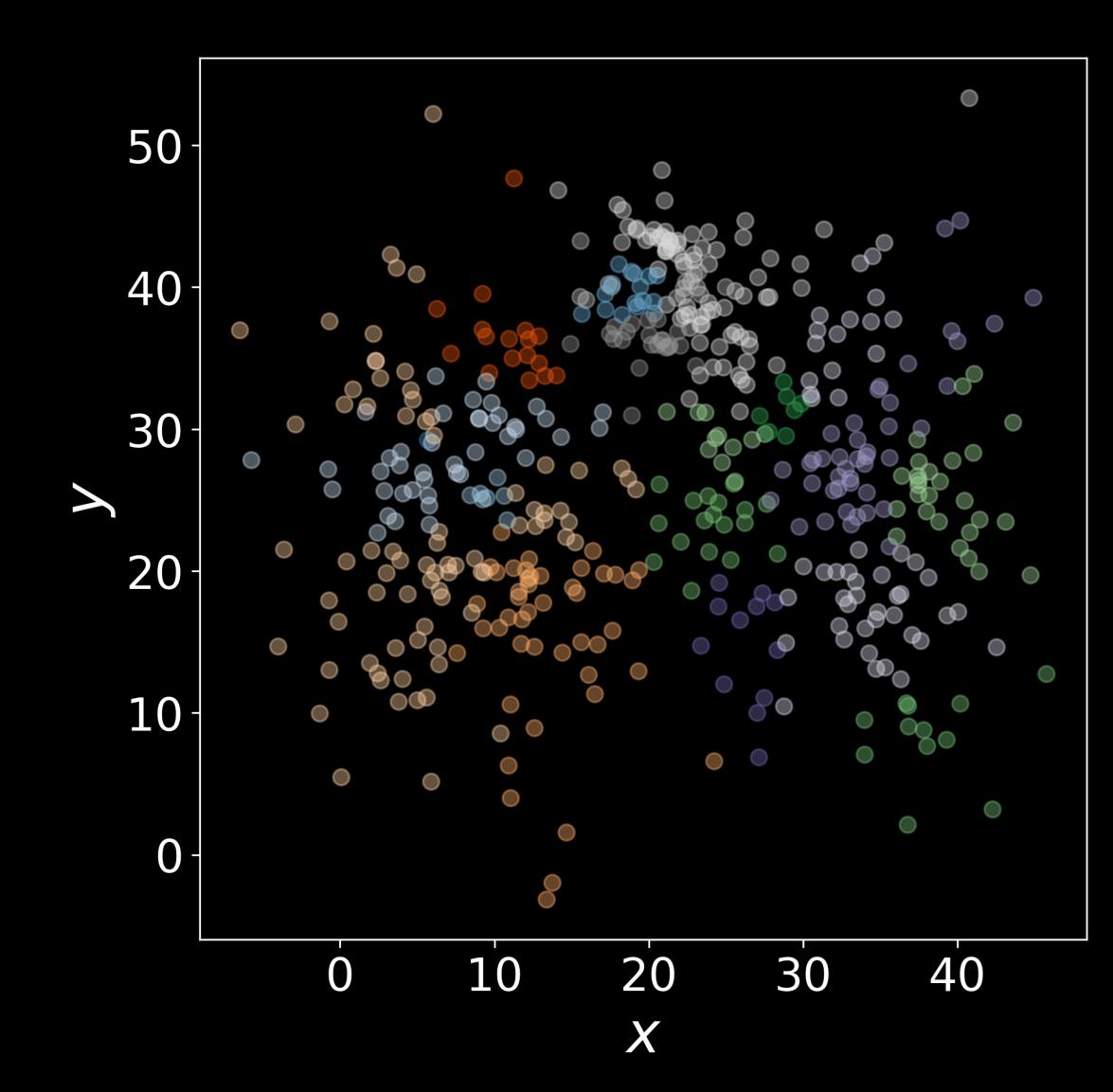


- Estimate density \hat{f} from data X
- produces spurious clusters

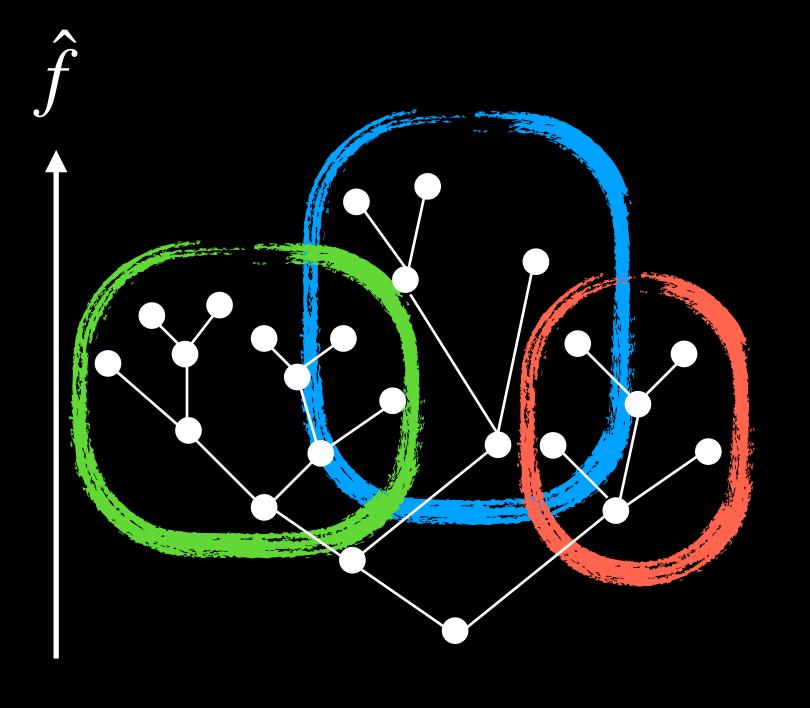


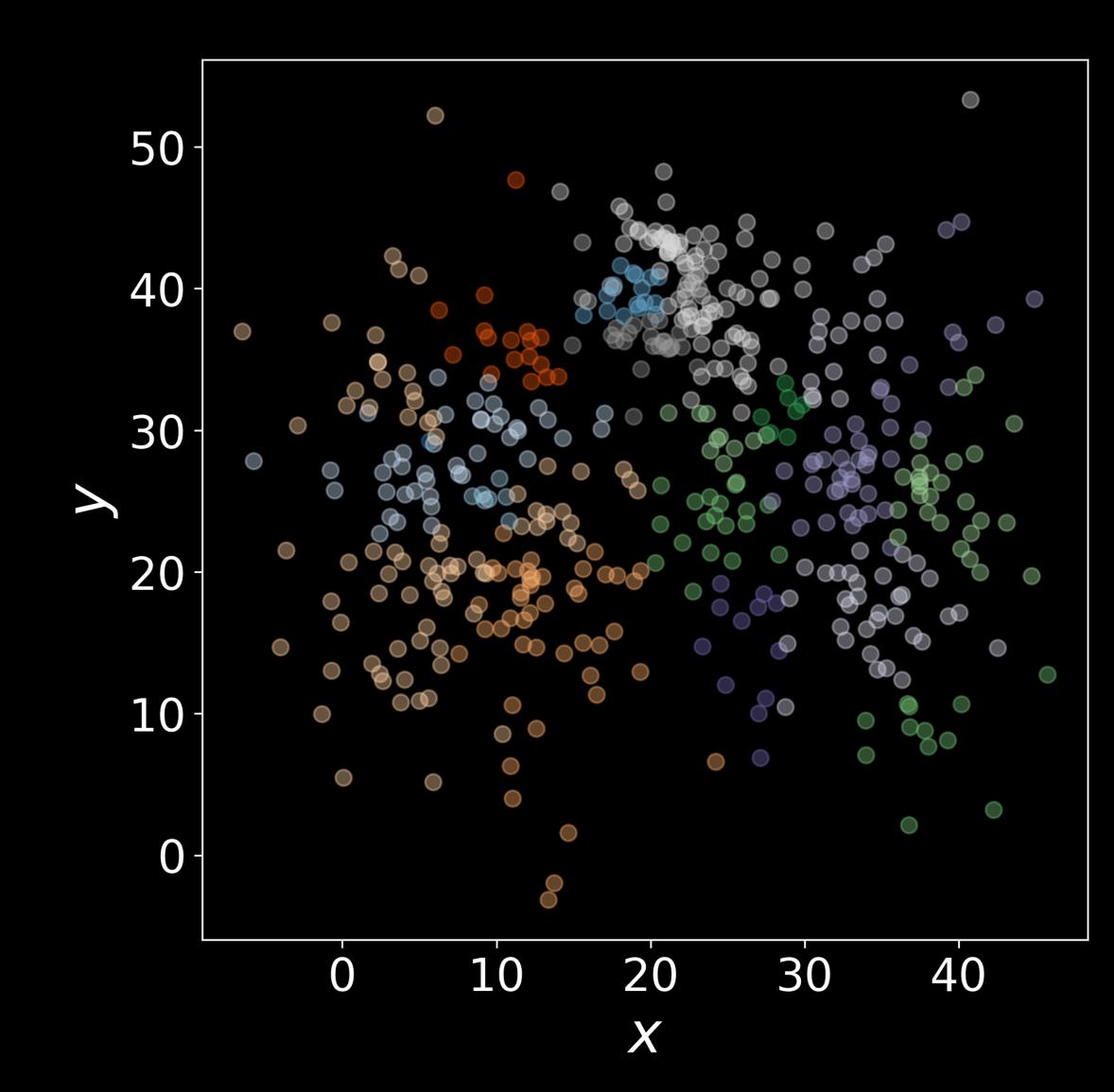
- Estimate density \hat{f} from data X
- produces spurious clusters



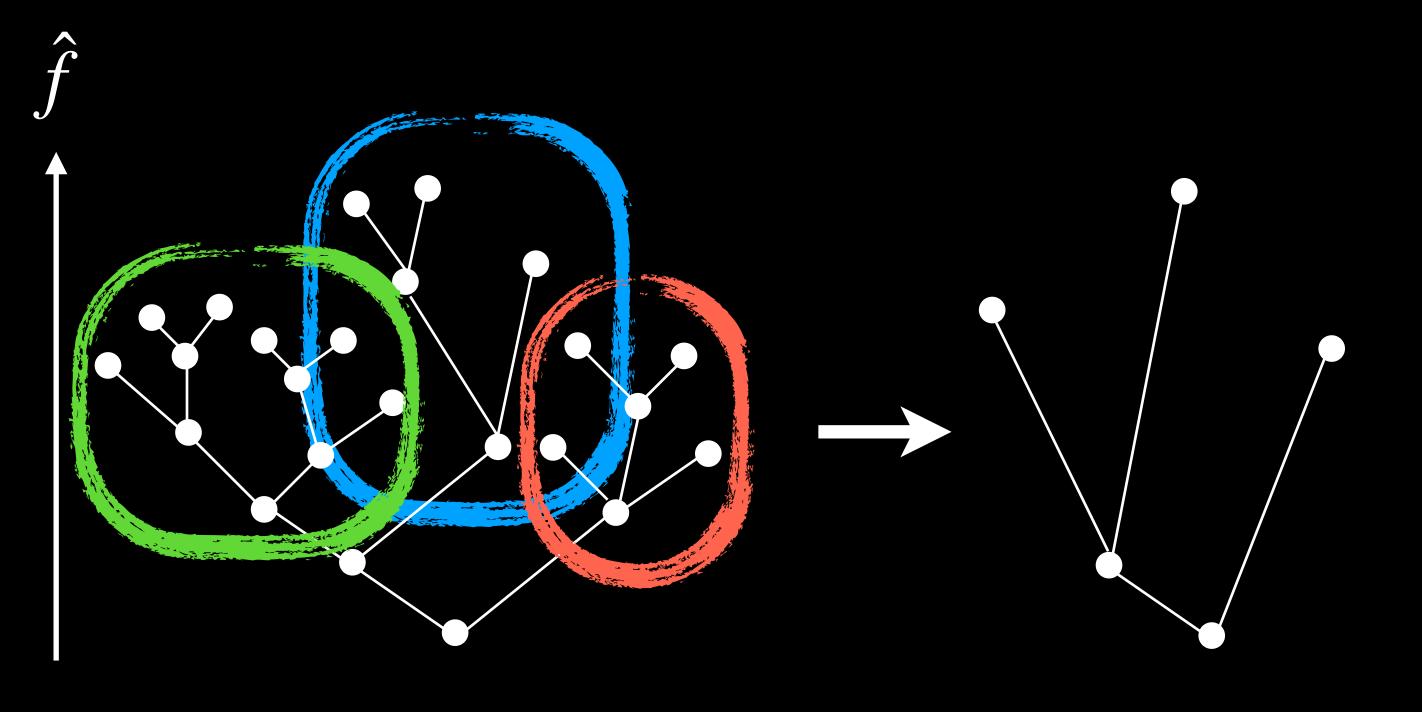


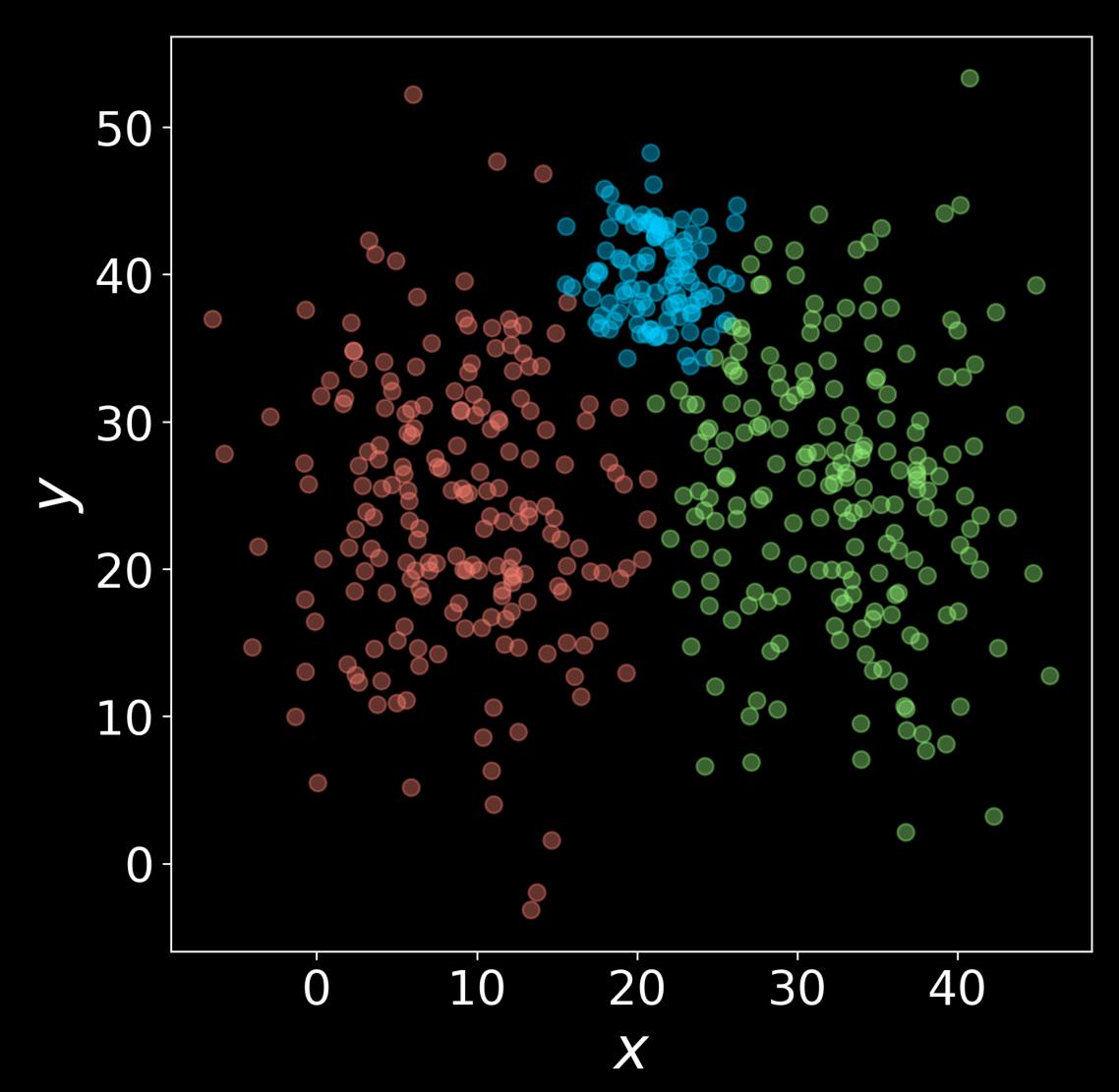
- Estimate density \hat{f} from data X
- produces spurious clusters





- Estimate density \hat{f} from data X
- produces spurious clusters

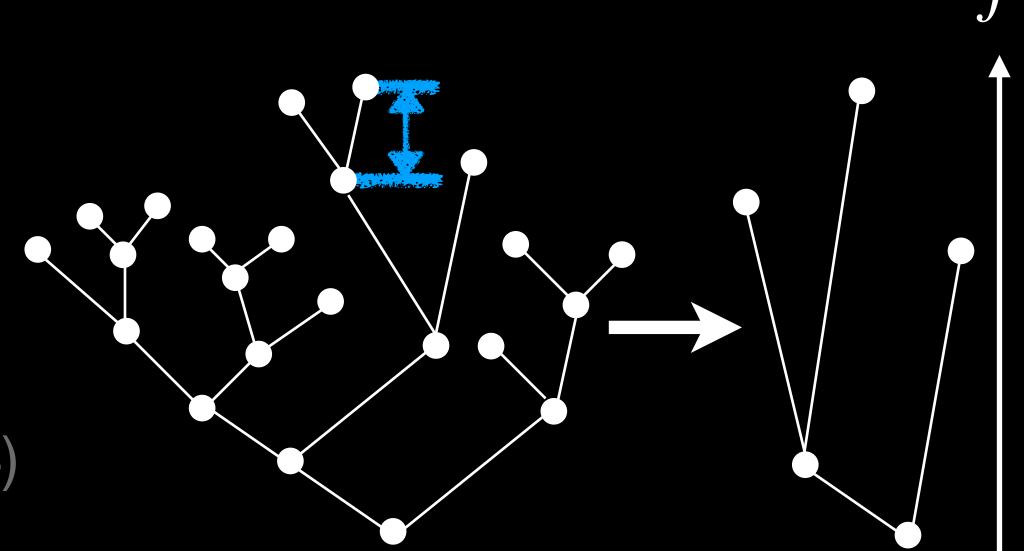




Pruning cluster tree

Current strategies

- Density difference / persistence $\Delta \hat{f}$ (Chazal+2013)
- Normalised $\Delta \hat{f}$ (Ding+2016)
- Distance based (Stuetzle+2010; Kpotufe+2011; Chaudhuri+2014)
- Relative excess of mass (HDBSCAN; Campello+2013)



Pruning cluster tree

Current strategies

Density difference / persistence Δf (Chazal+2013)

Normalised $\Delta \hat{f}$ (Ding+2016)

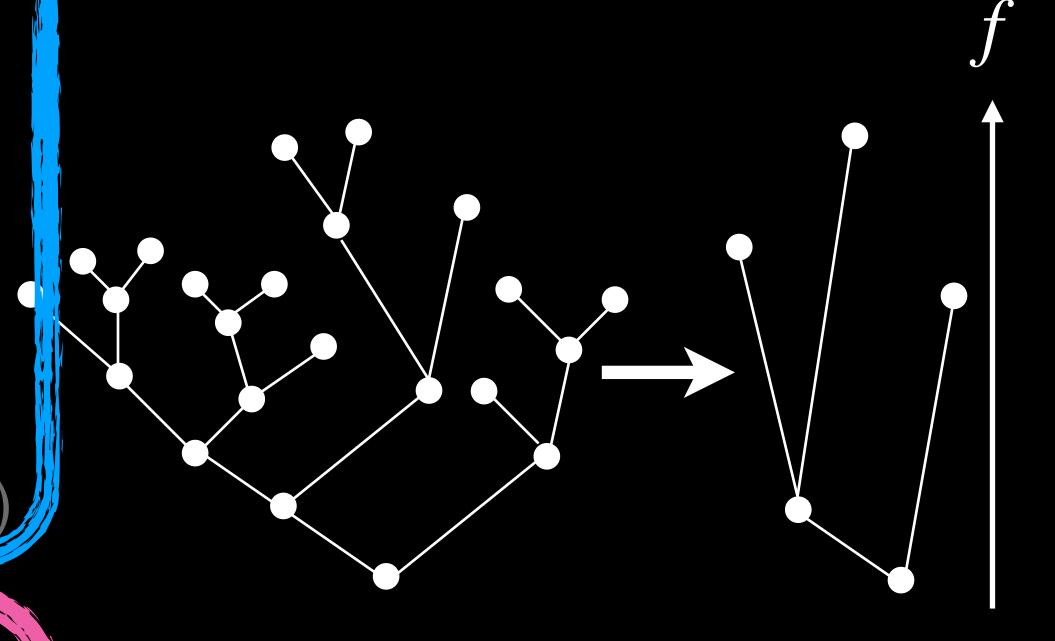
Hard to determine threshold for $N\gg 1$

Distance based

(Stuetzle+2010; Kpotufe+2011; Chaudhuri+2014)

Relative excess of mass (HDBSCAN; Campello+2013)

Typically over-merges

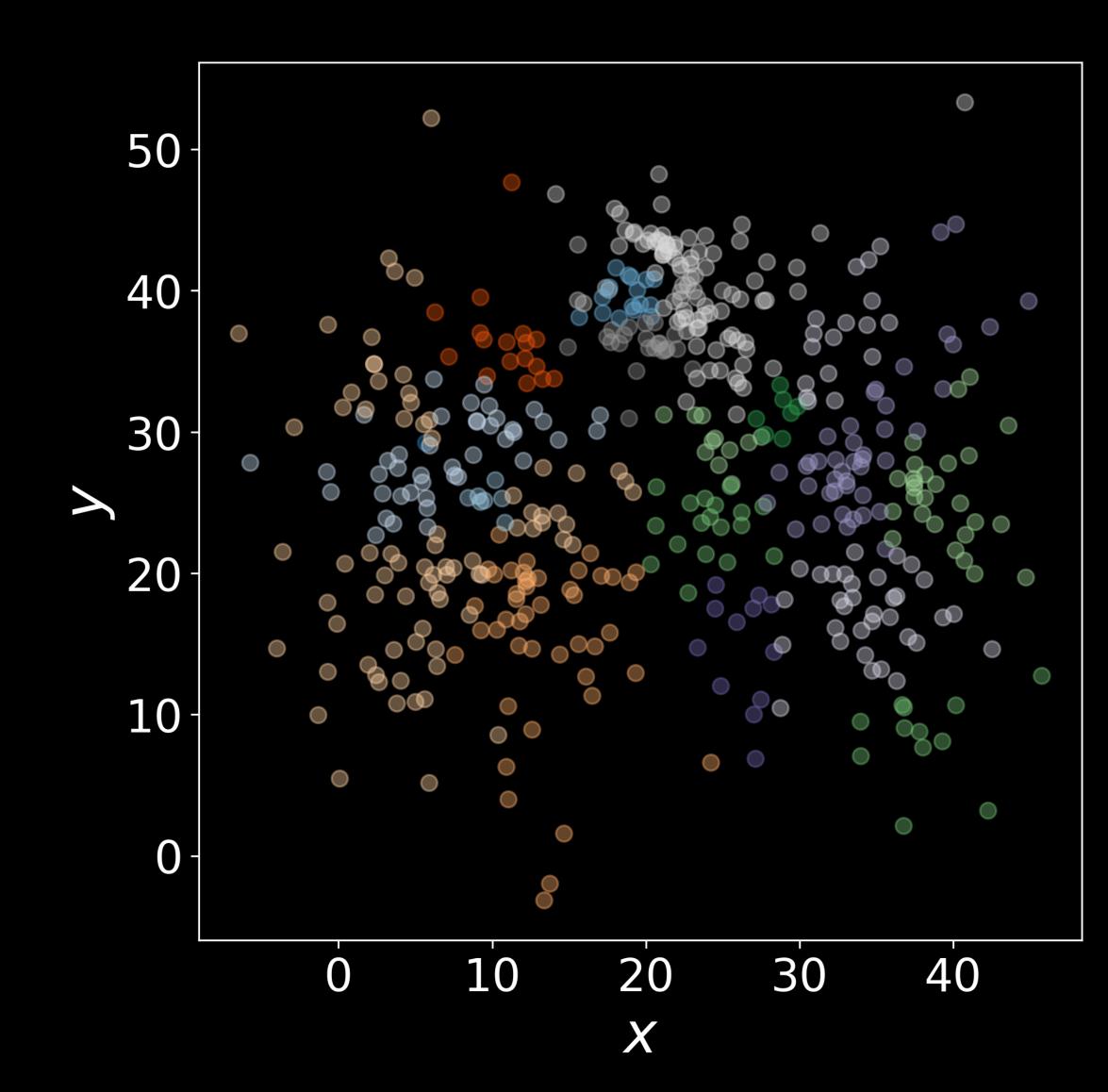


Going back to Wishart (1969) Clusters are modes of f

What constitutes a cluster?

Clusters are modal regions of f

Test for multimodality



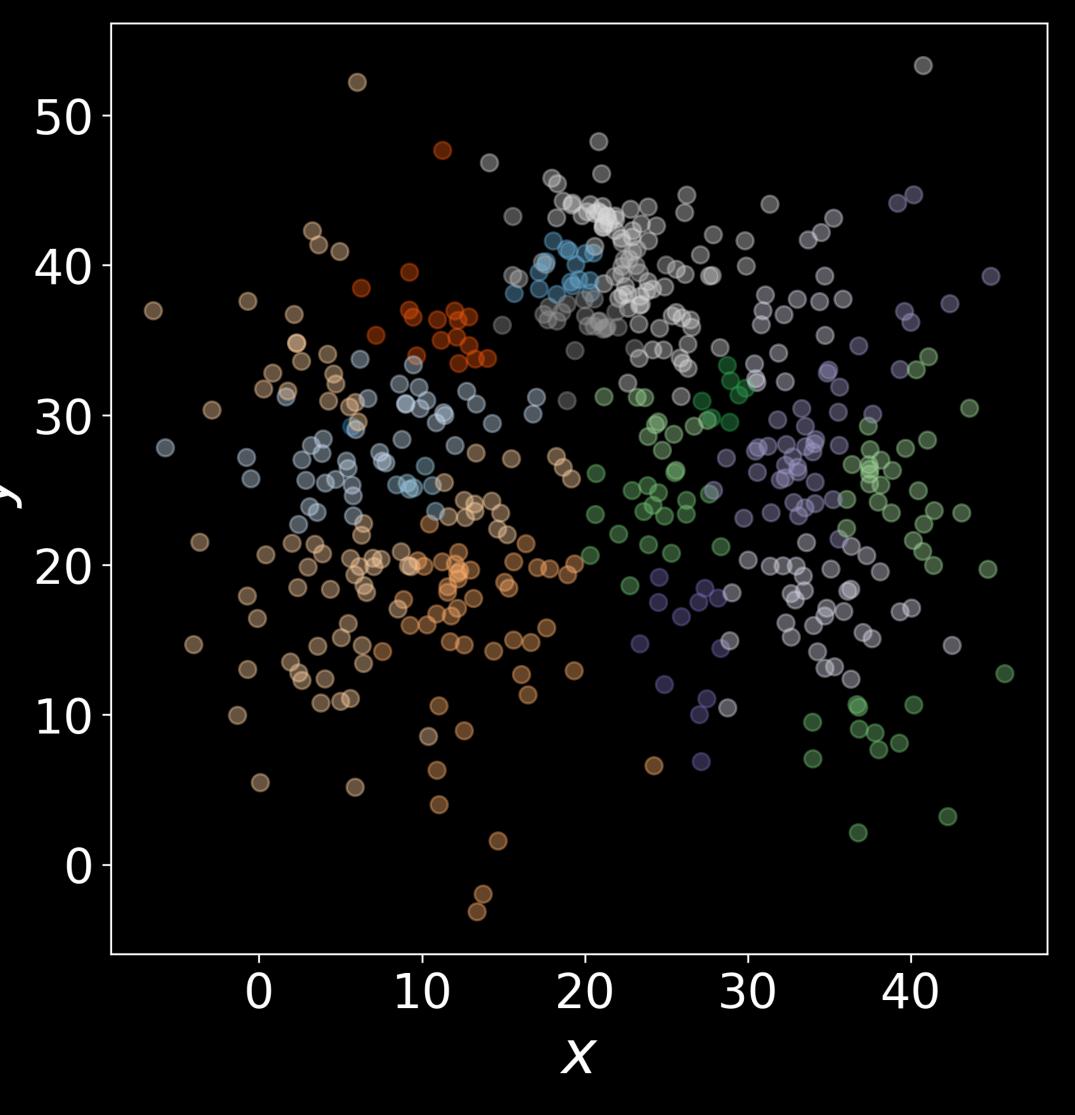
What constitutes a cluster?

Clusters are modal regions of f

Test for multimodality

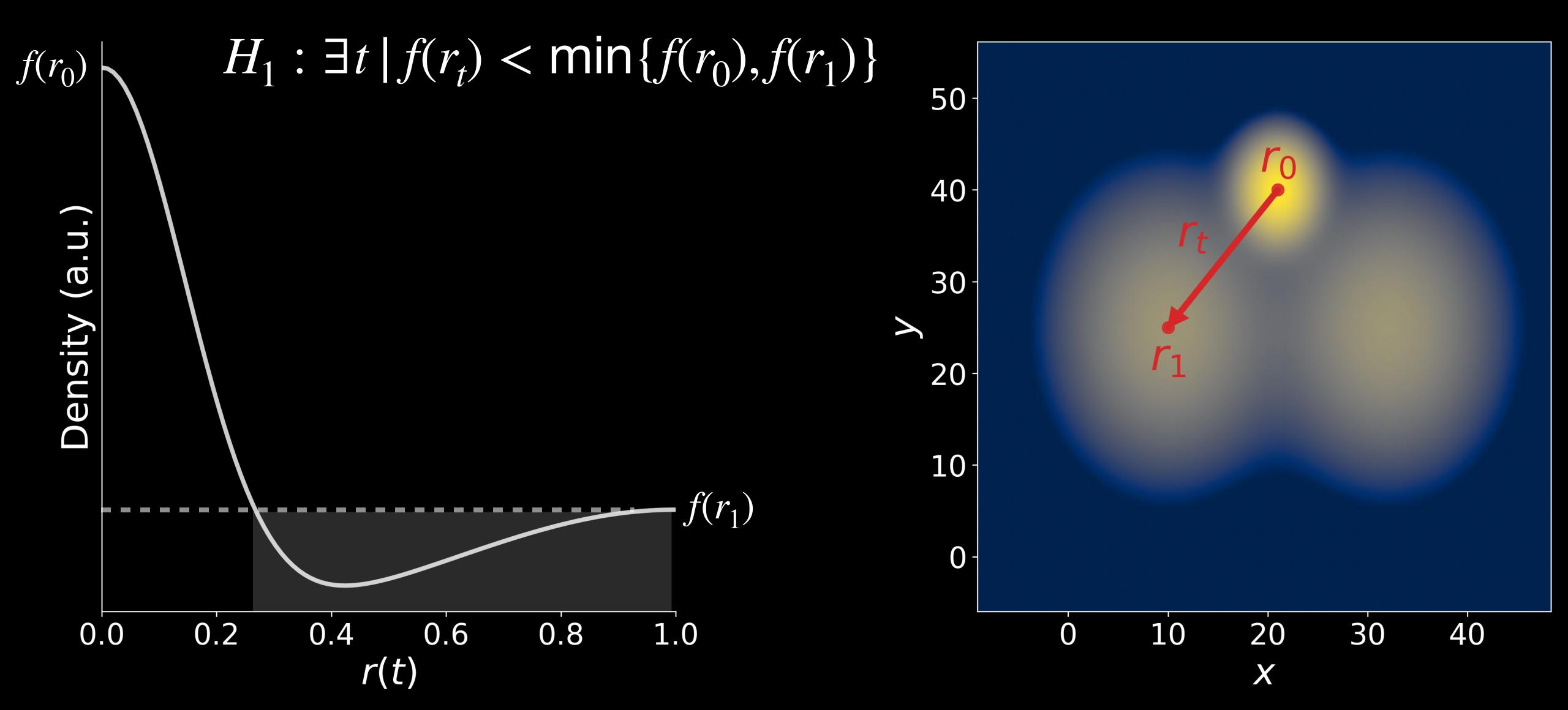
 H_0 : Points belong to single mode

 H_1 : Points belong to multiple modes 10-

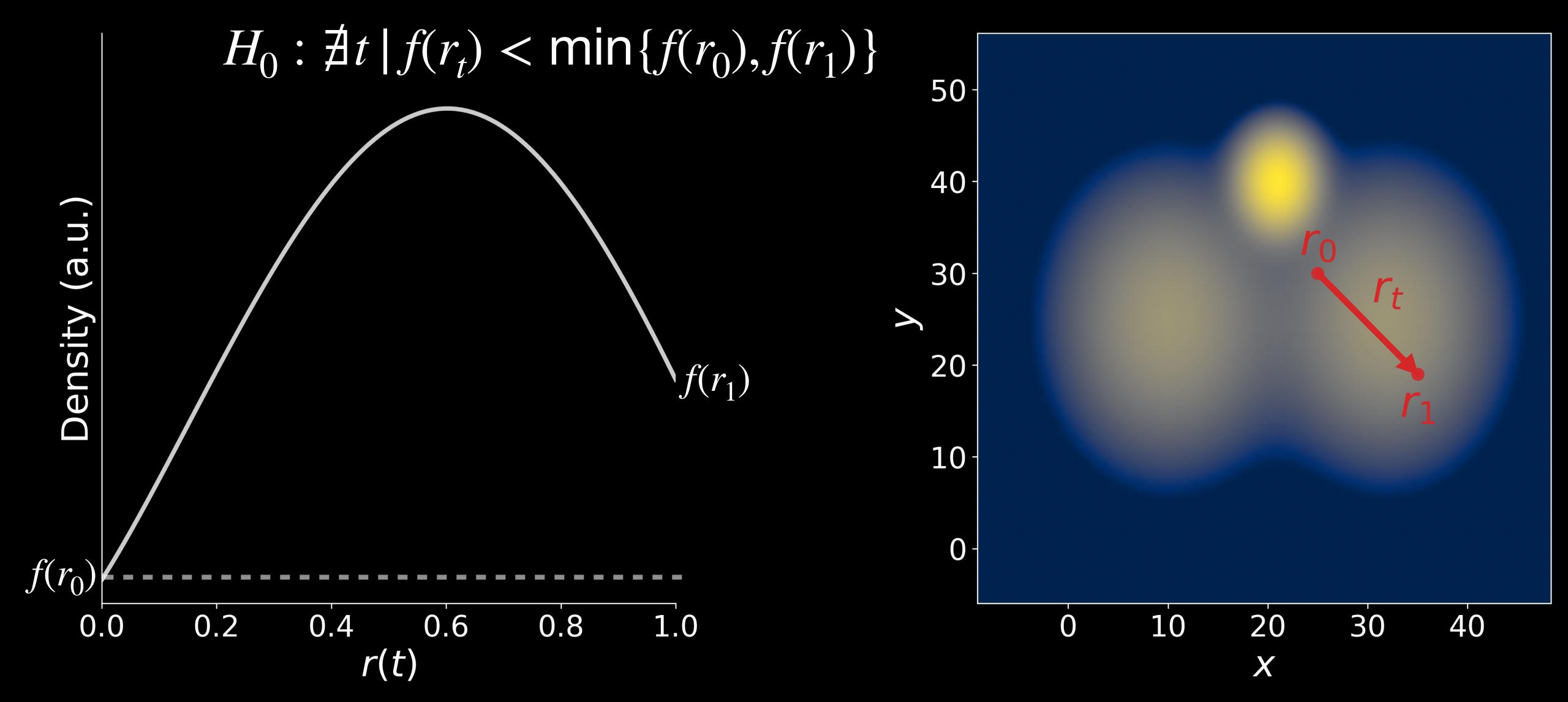


Modality along paths

Multiple modes: density dip along path



Single mode: no density dip



Multimodality test statistic

$$H_0: \nexists t \mid f(r_t) < \min\{f(r_0), f(r_1)\}$$

$$T(t) := \min\{\log f(r_0), \log f(r_1)\} - \log f(r_t)$$

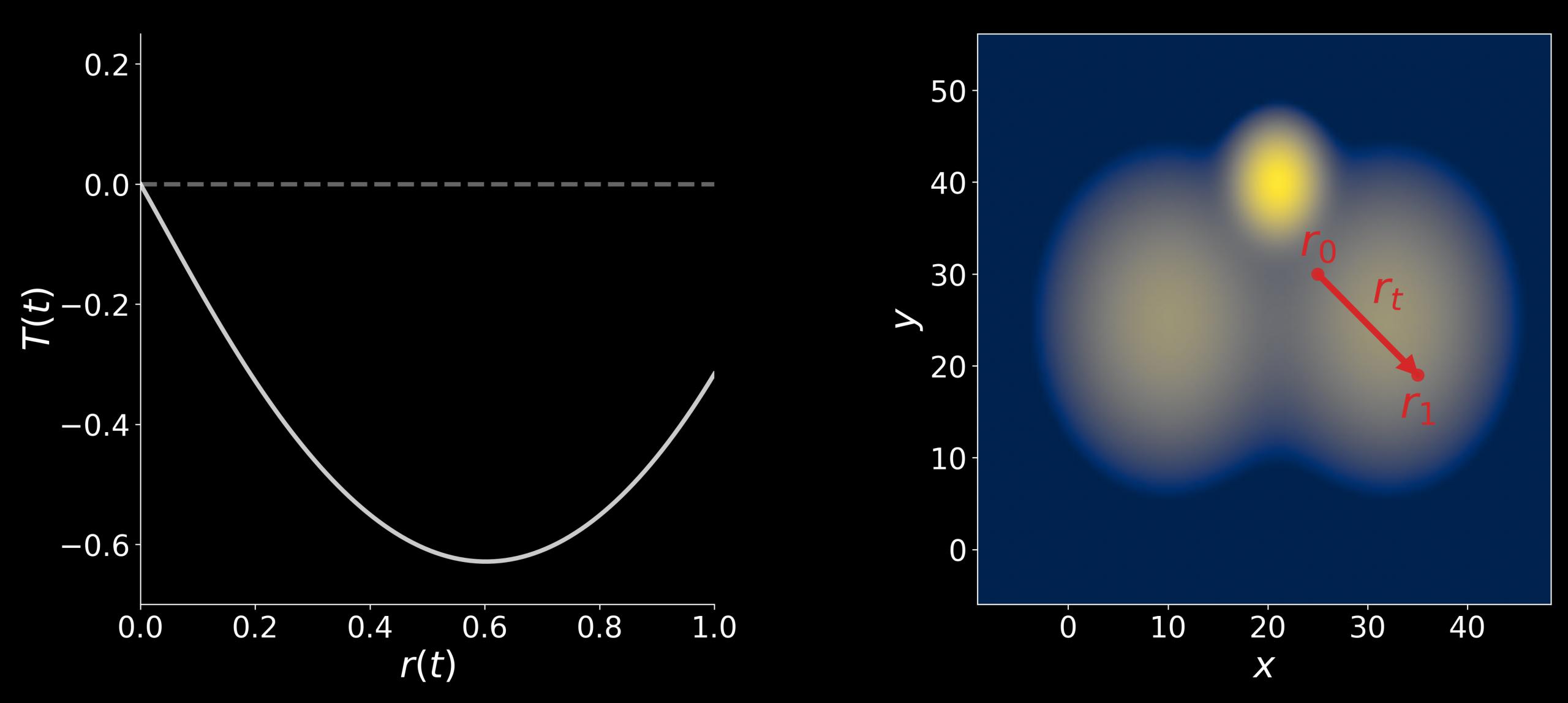
Multimodality test statistic

$$H_0: \nexists t \mid f(r_t) < \min\{f(r_0), f(r_1)\}$$

$$T(t) := \min\{\log f(r_0), \log f(r_1)\} - \log f(r_t)$$

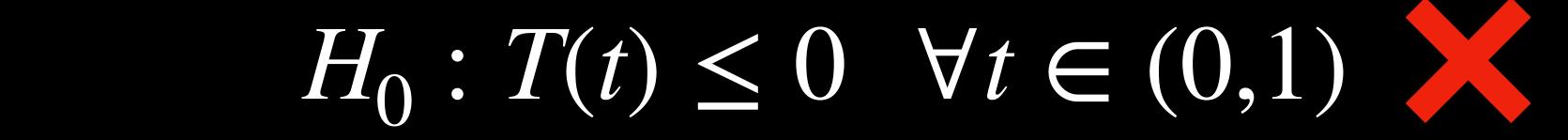
$$H_0: T(t) \le 0 \ \forall t \in (0,1)$$

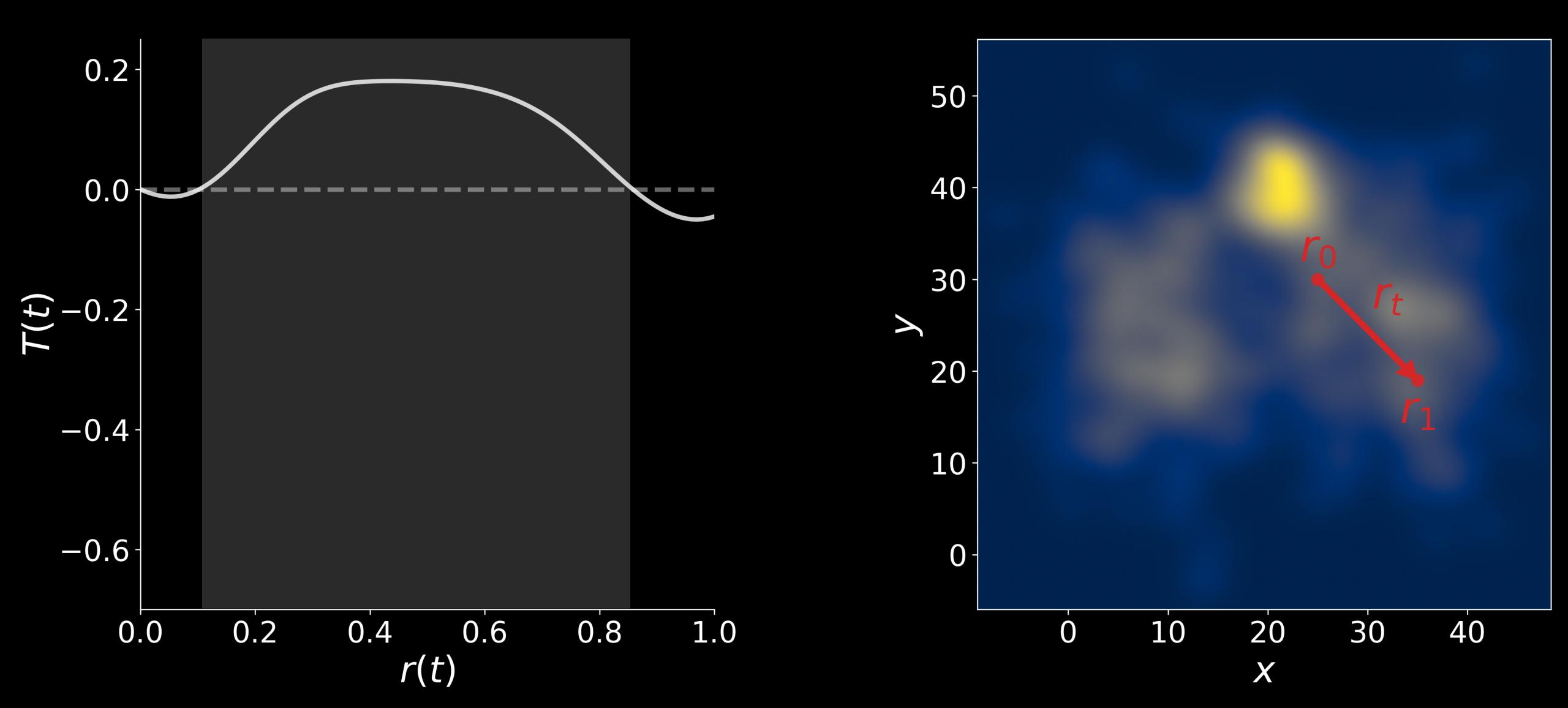
Let's apply: f



On estimated density?

$$H_0: T(t) \leq 0 \ \forall t \in (0,1)$$





$$f \rightarrow \hat{f}: T(t) \rightarrow \hat{T}(t)$$

Multimodality test statistic: $\hat{T}(t)$

$$T(t) := \min\{\log f(r_0), \log f(r_1)\} - \log f(r_t)$$

$$\hat{f}(x) \propto \frac{1}{d_k^p(x)}$$
 k-NN density estimator

Multimodality test statistic: $\hat{T}(t)$

$$T(t) := \min\{\log f(r_0), \log f(r_1)\} - \log f(r_t)$$

$$\hat{f}(x) \propto \frac{1}{d_k^p(x)}$$
 k-NN density estimator

$$\hat{T}(t) := -p \max\{\log d_k(r_0), \log d_k(r_1)\} + p \log d_k(r_t)$$

Multimodality test statistic: $\hat{T}(t)$

$$T(t) := \min\{\log f(r_0), \log f(r_1)\} - \log f(r_t)$$

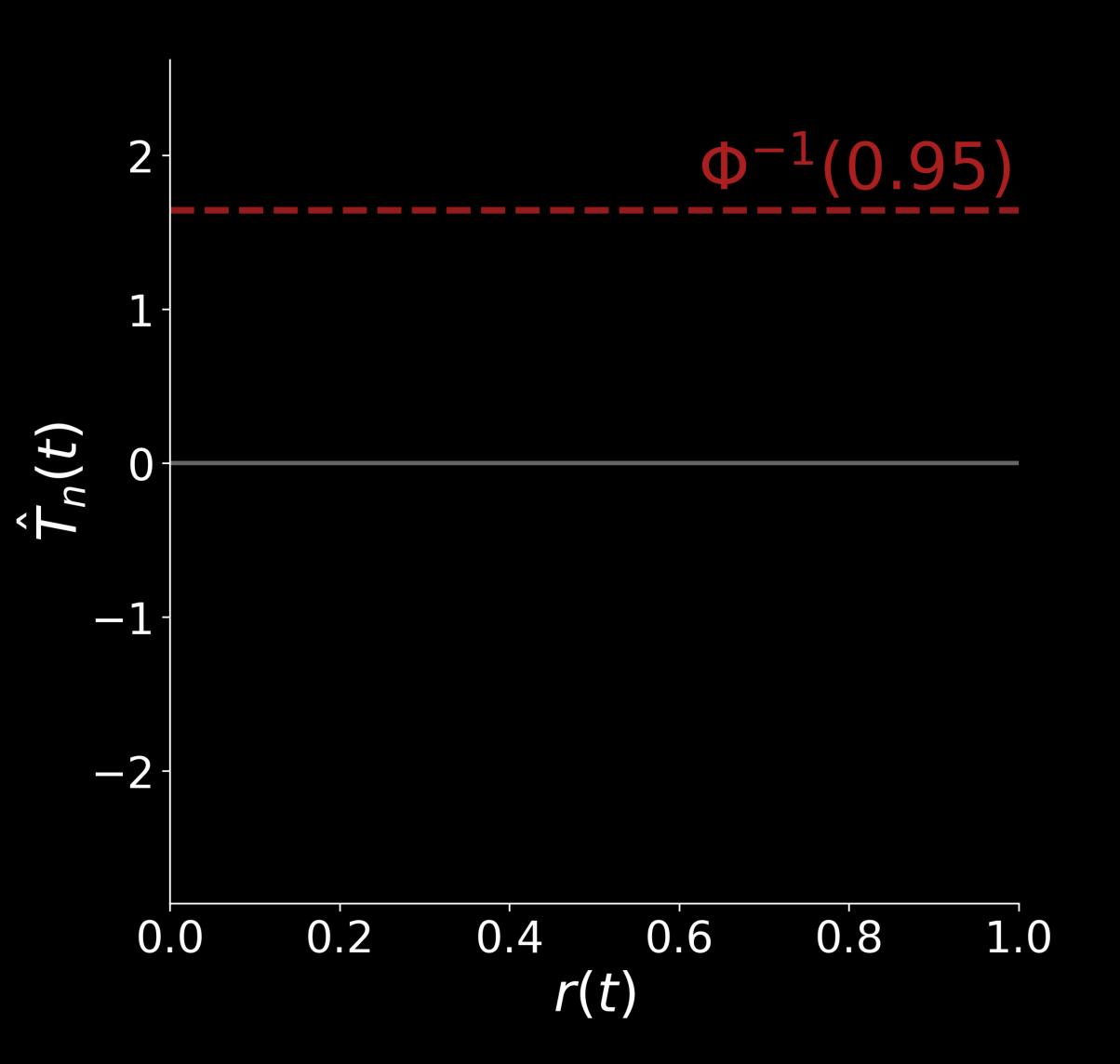
$$\hat{f}(x) \propto \frac{1}{d_k^p(x)}$$
 k-NN density estimator

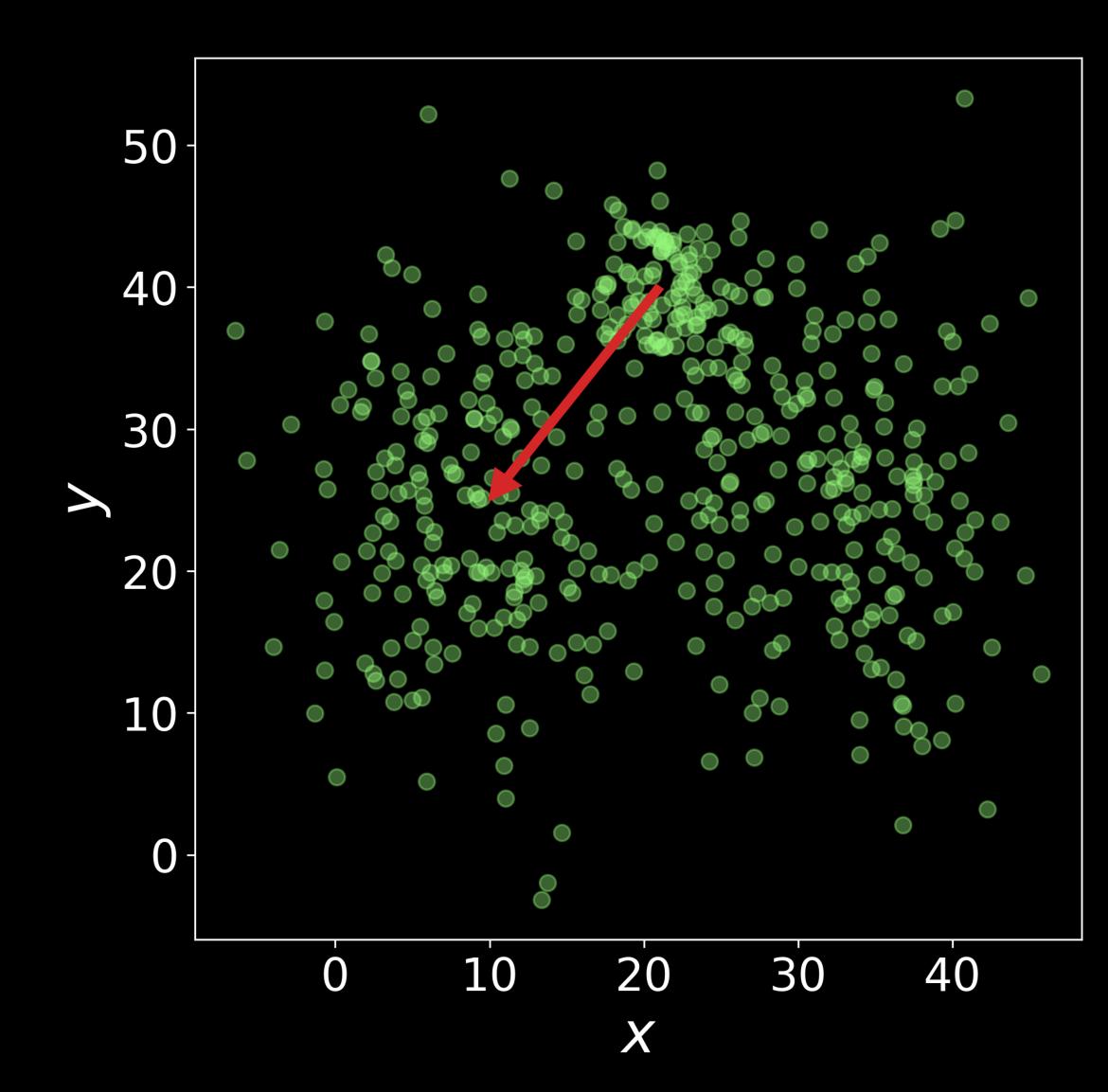
$$\hat{T}(t) := -p \max\{\log d_k(r_0), \log d_k(r_1)\} + p \log d_k(r_t)$$

Burman & Polonik (2009) show
$$H_0:\hat{T}(t) \sim \mathcal{N}(0,1) \times c$$

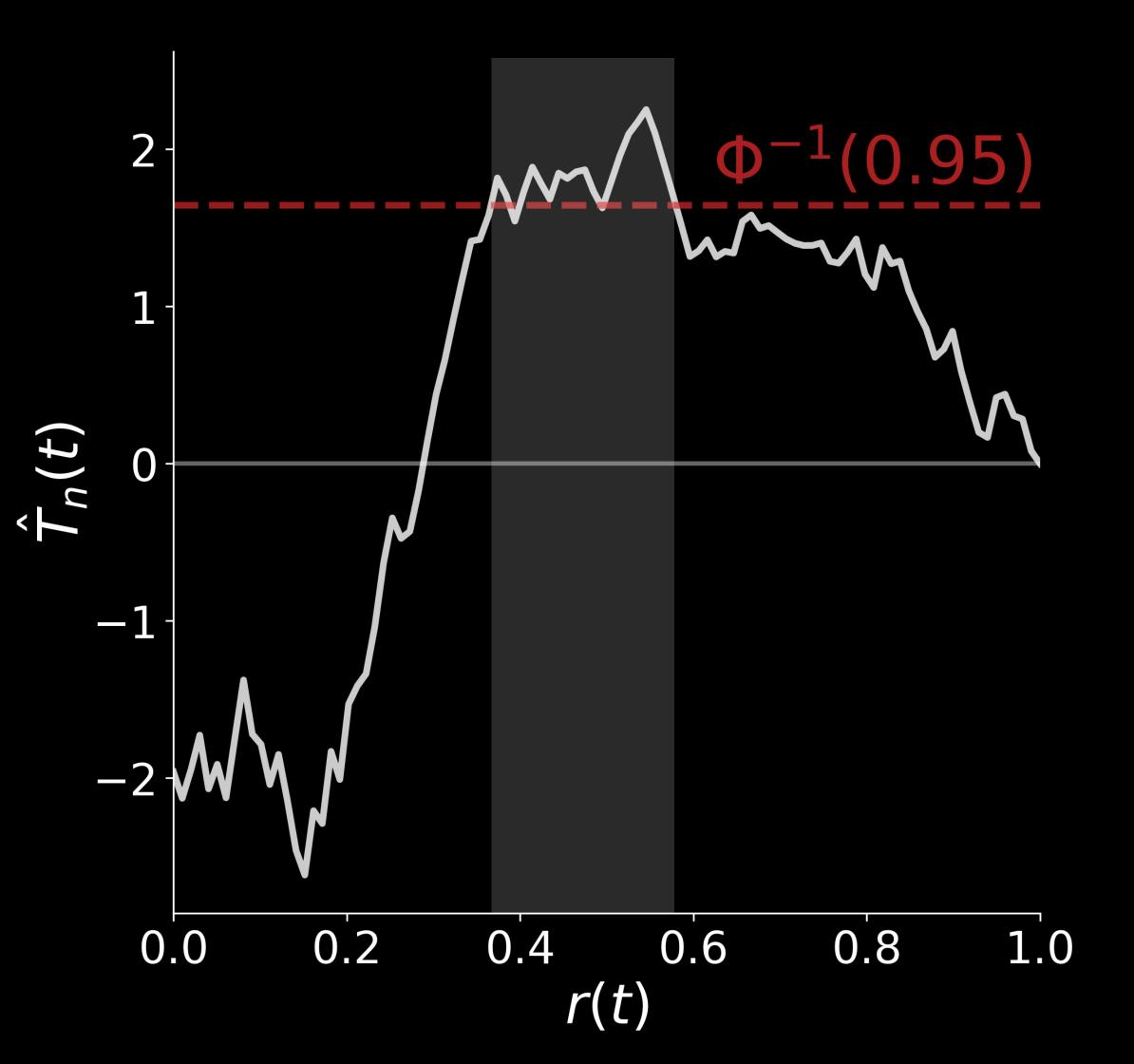
Let's test it!

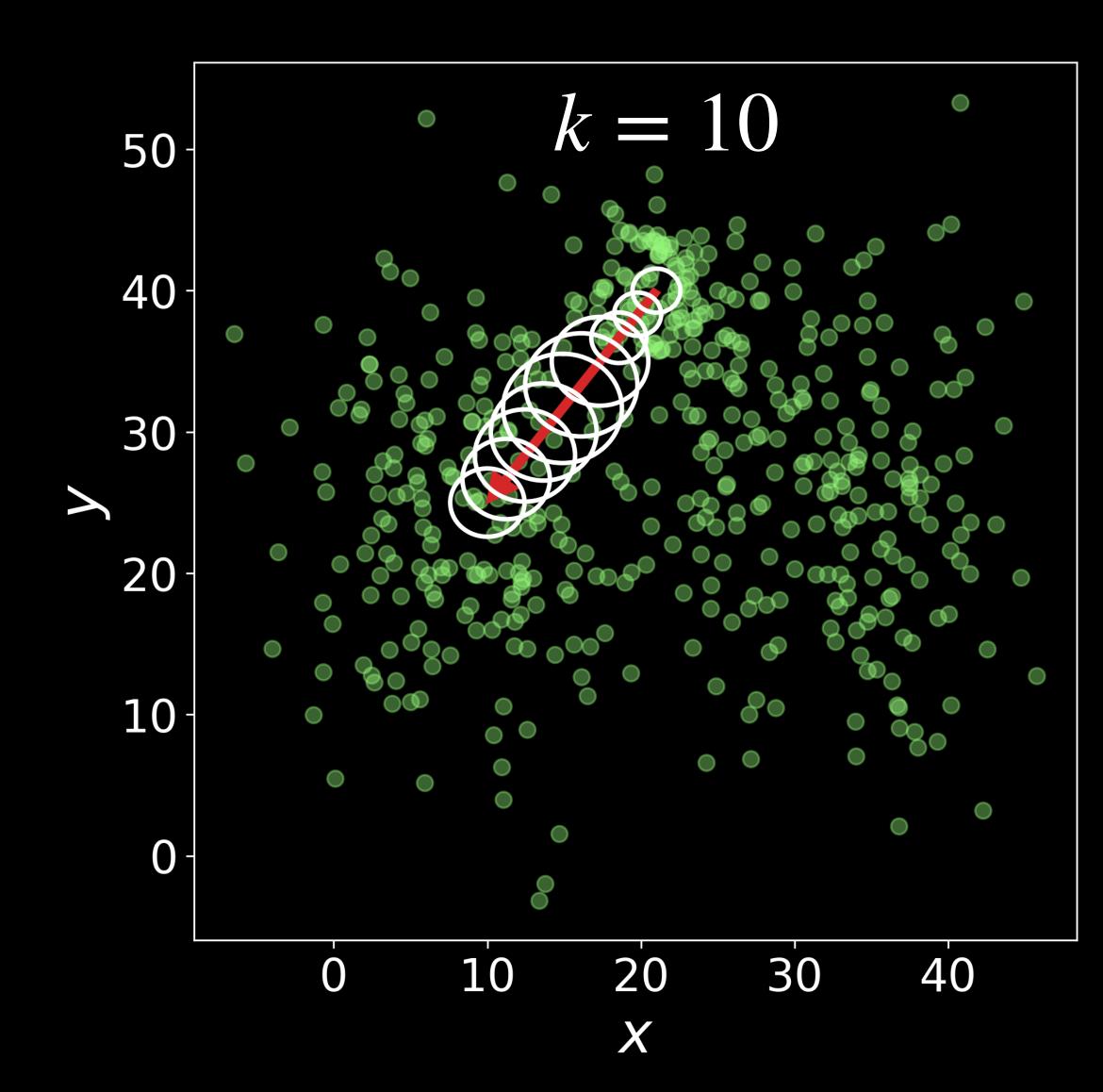
$$H_1: \hat{T}_n(t) > \Phi^{-1}(1-\alpha)$$
 ?



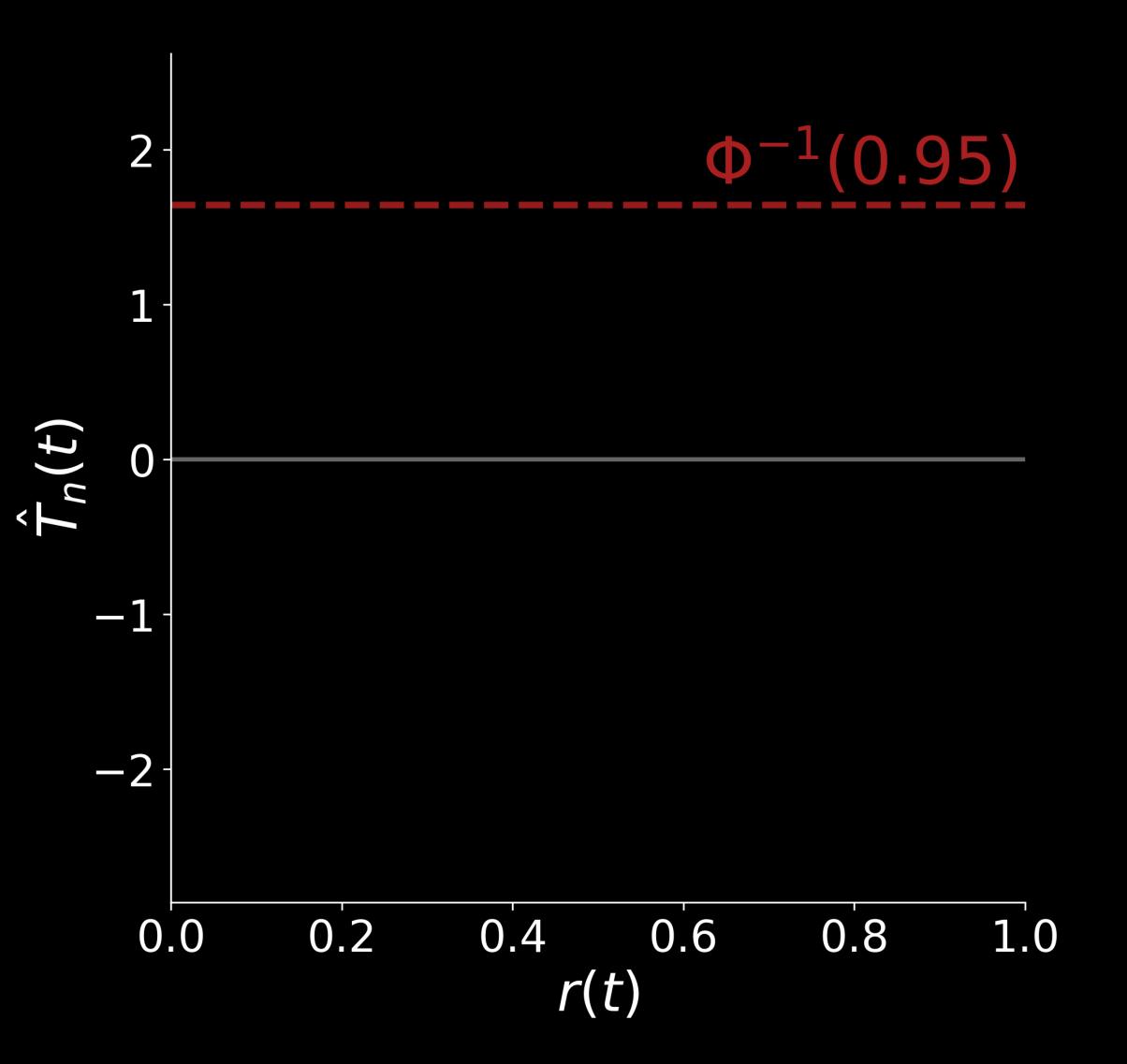


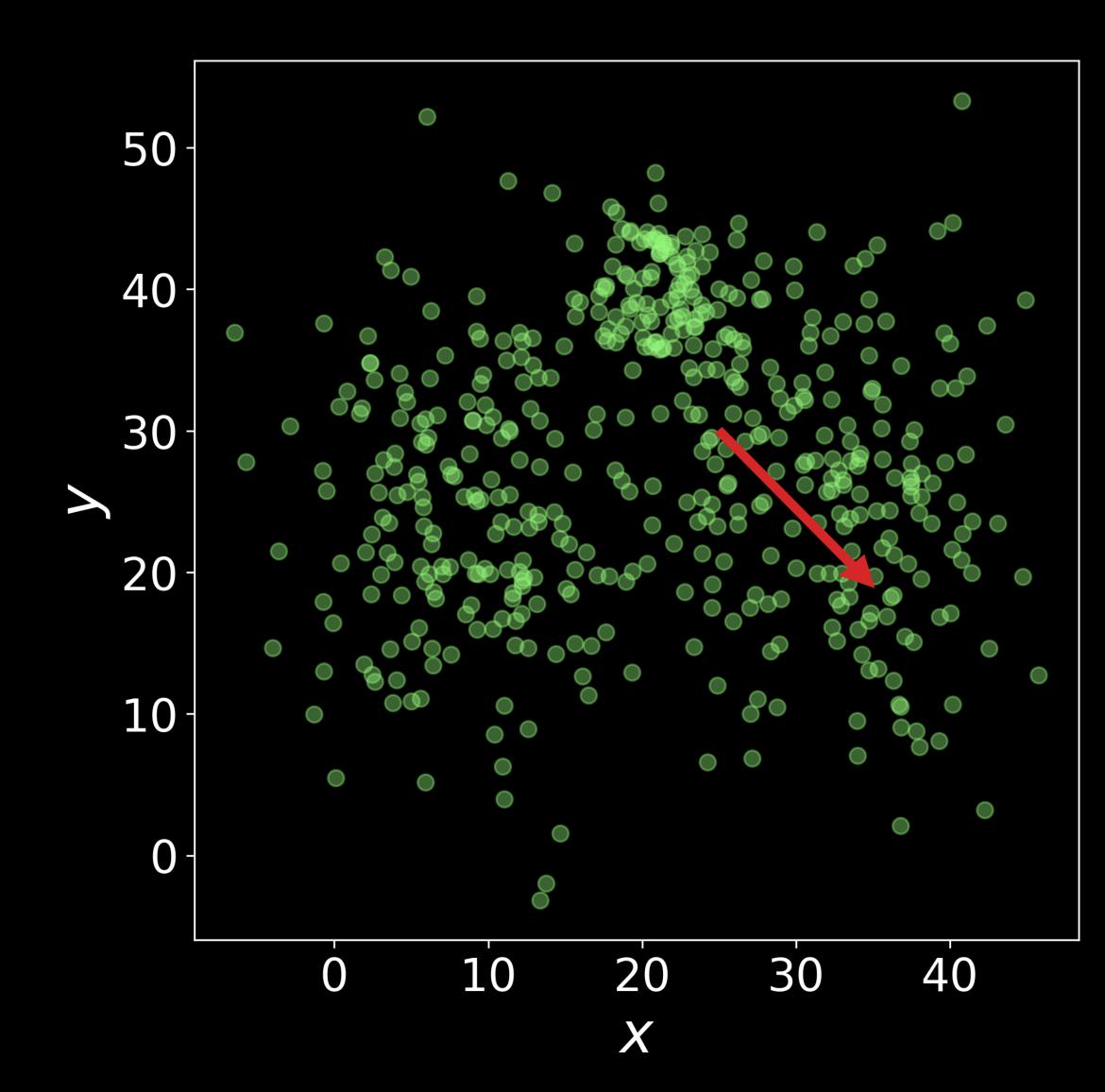
$$H_1: \hat{T}_n(t) > \Phi^{-1}(1-\alpha)$$



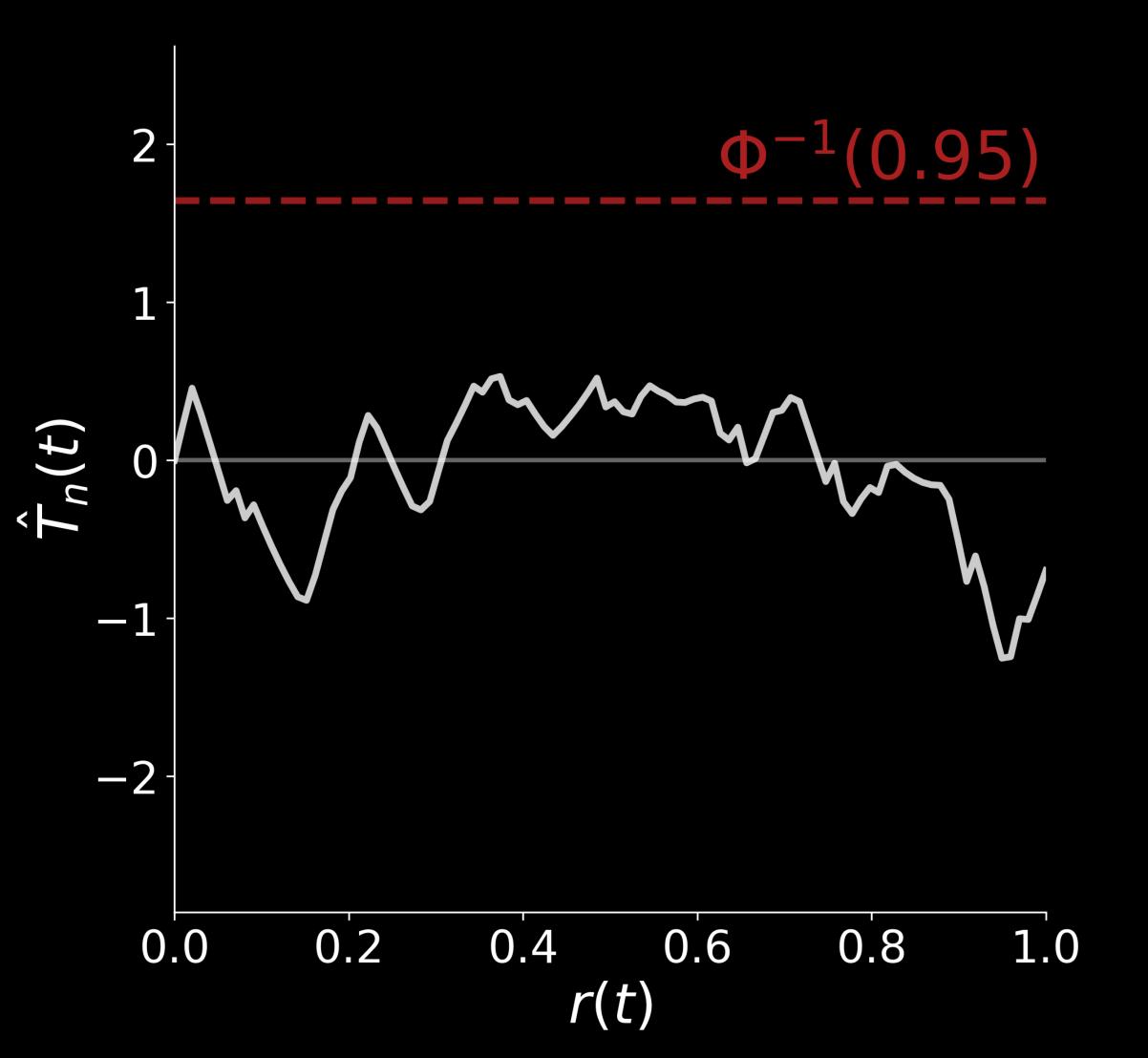


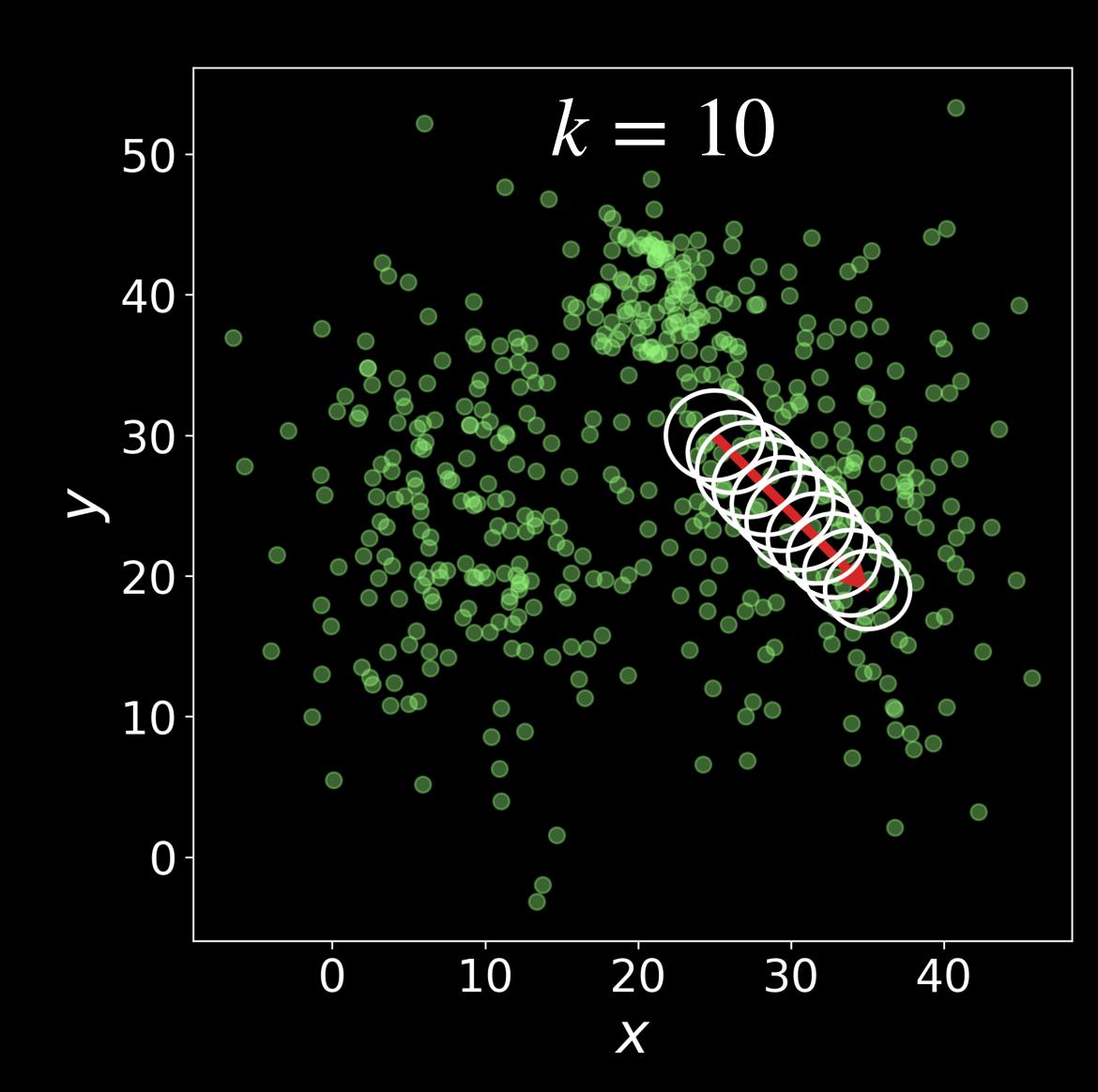
$$H_0: \hat{T}_n(t) \leq \Phi^{-1}(1-\alpha)$$
 ?





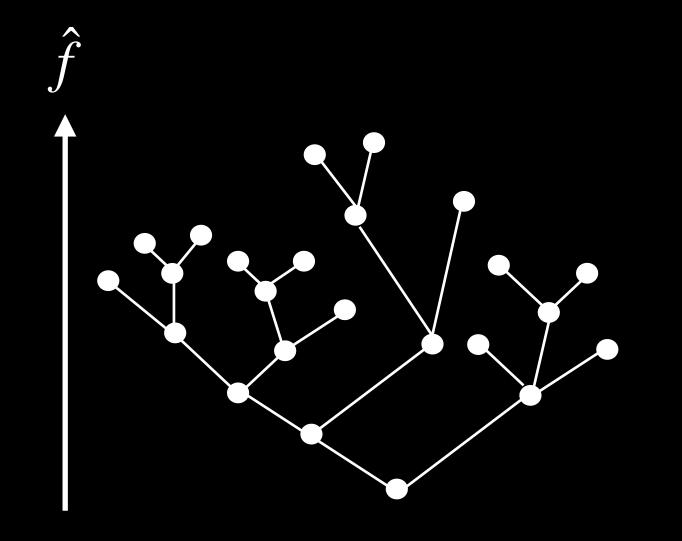
$$H_0: \hat{T}_n(t) \leq \Phi^{-1}(1-\alpha)$$

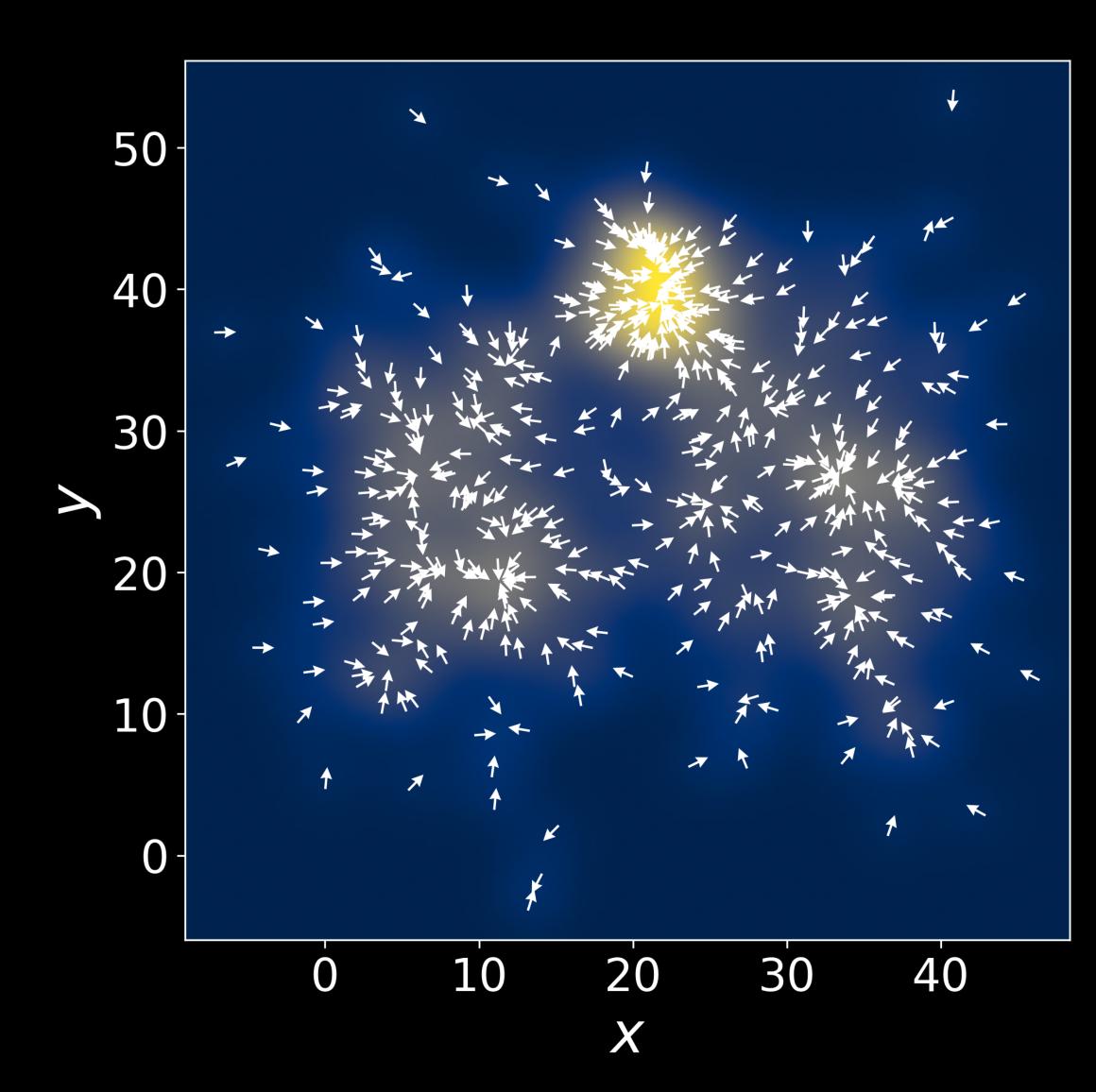




Putting it all together

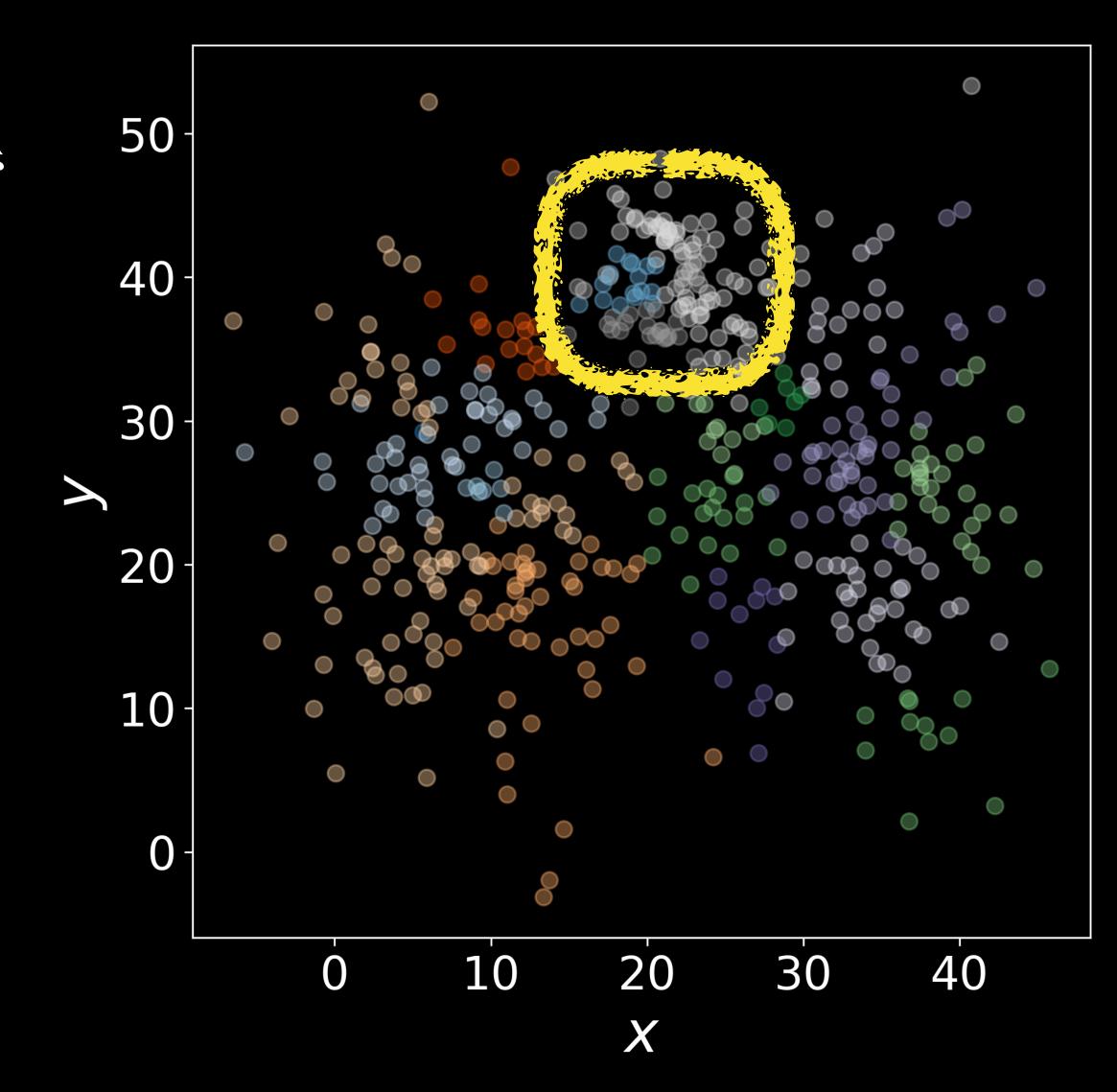
1. Gradient ascent step — cluster tree



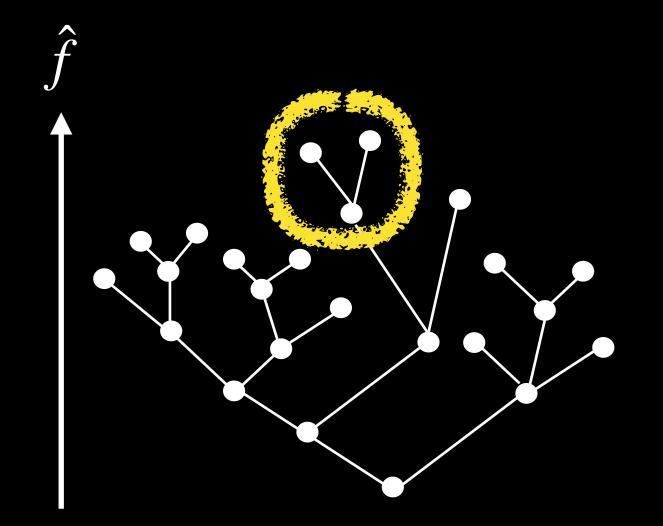


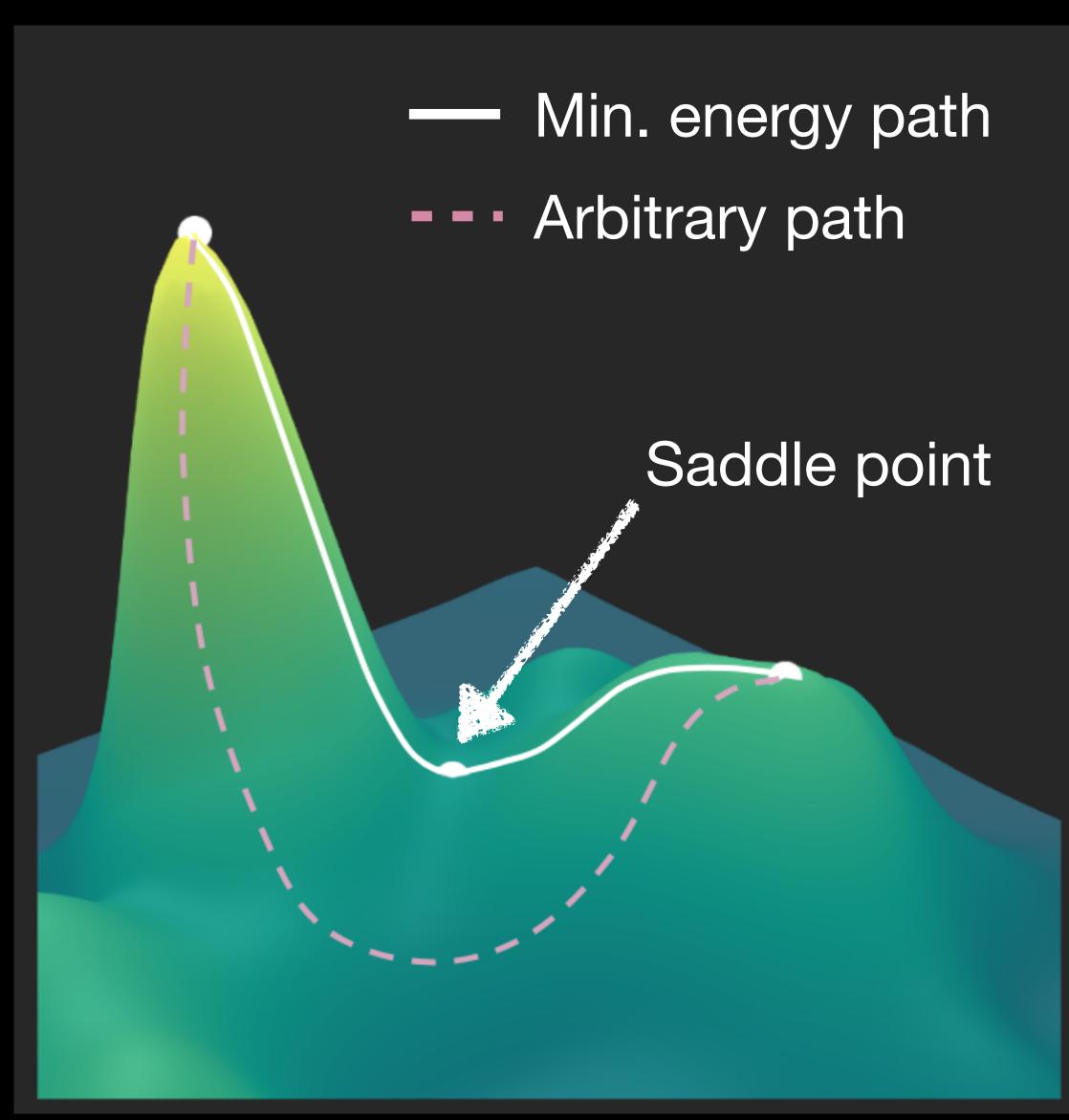
- 1. Gradient ascent step
- 2. Scan saddle points: $\max \hat{f} \to \min \hat{f}$



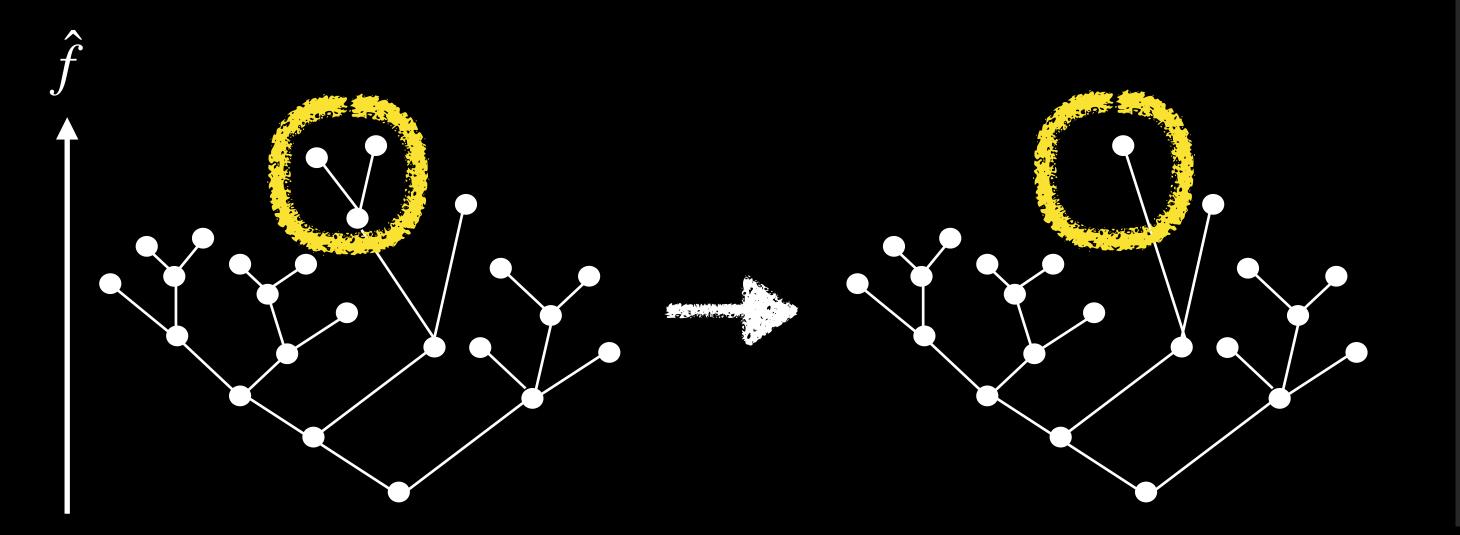


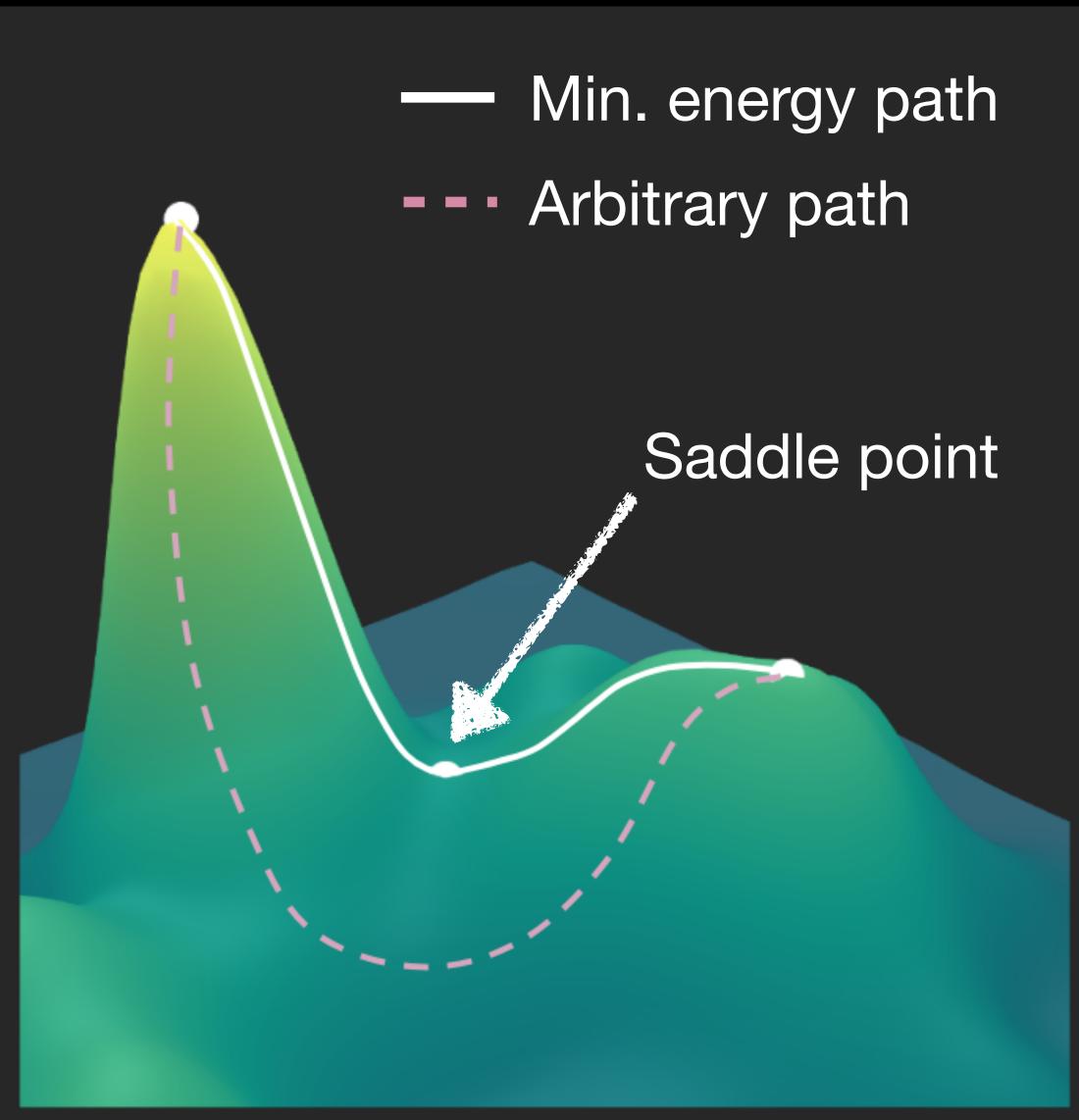
- 1. Gradient ascent step
- 2. Scan saddle points: $\max \hat{f} \to \min \hat{f}$
 - A. Test modality between modes





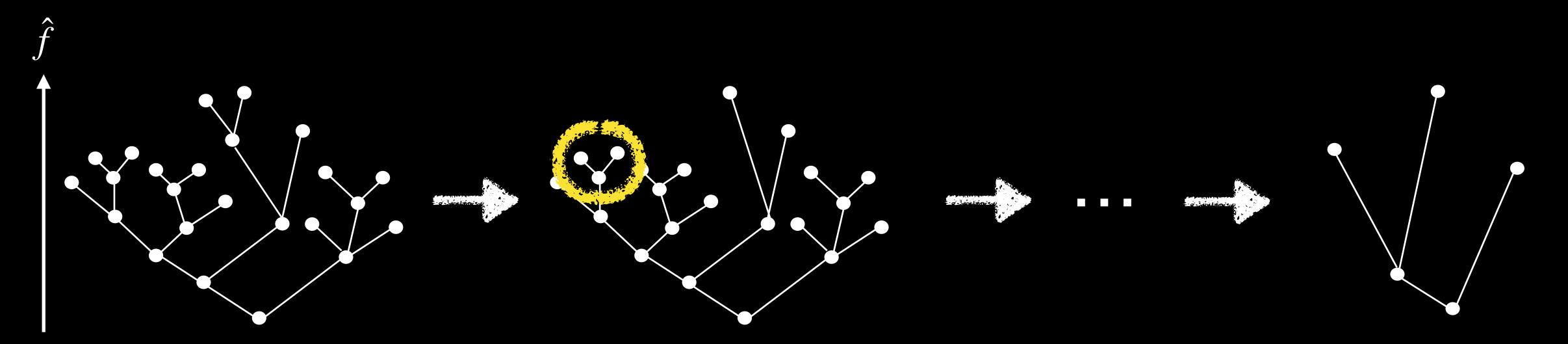
- 1. Gradient ascent step
- 2. Scan saddle points: $\max \hat{f} \to \min \hat{f}$
 - A. Test modality between modes
 - B. If H_0 cannot be rejected merge



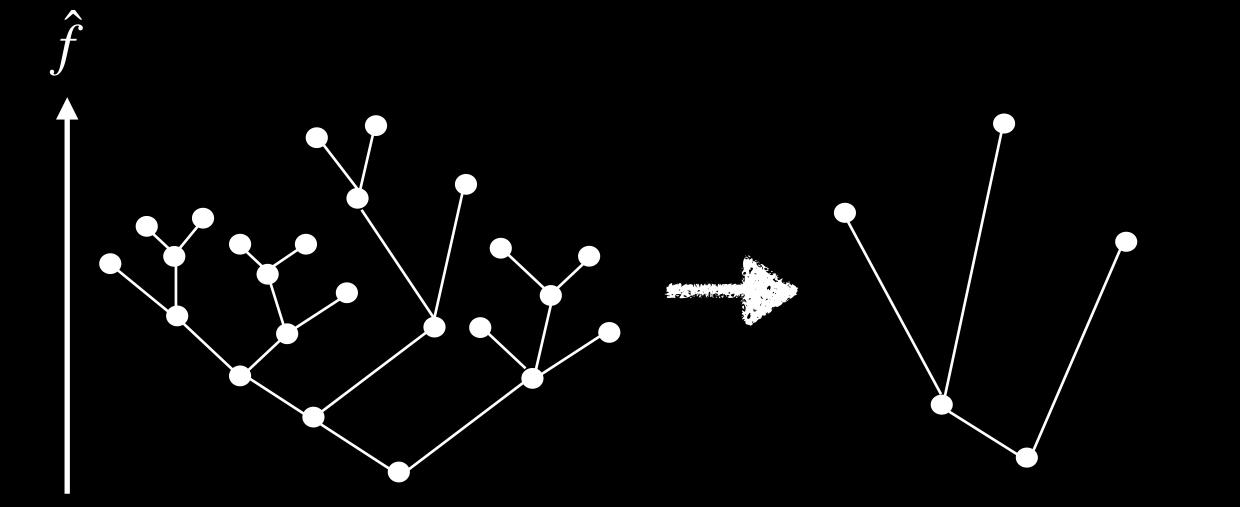


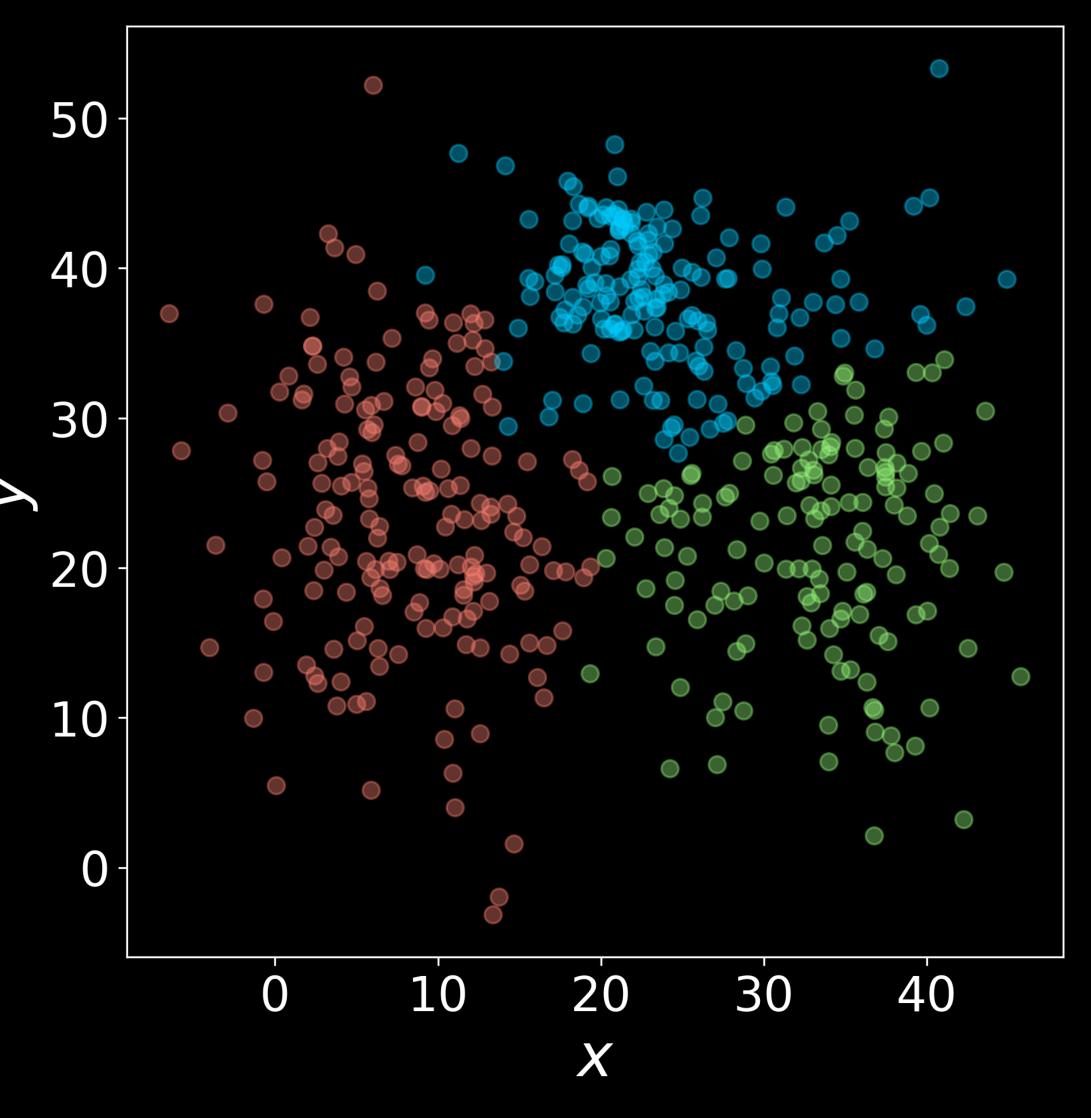
- 1. Gradient ascent step
- 2. Scan saddle points: $\max \hat{f} \to \min \hat{f}$
 - A. Test modality between modes
 - B. If H_0 cannot be rejected merge

Next saddle point



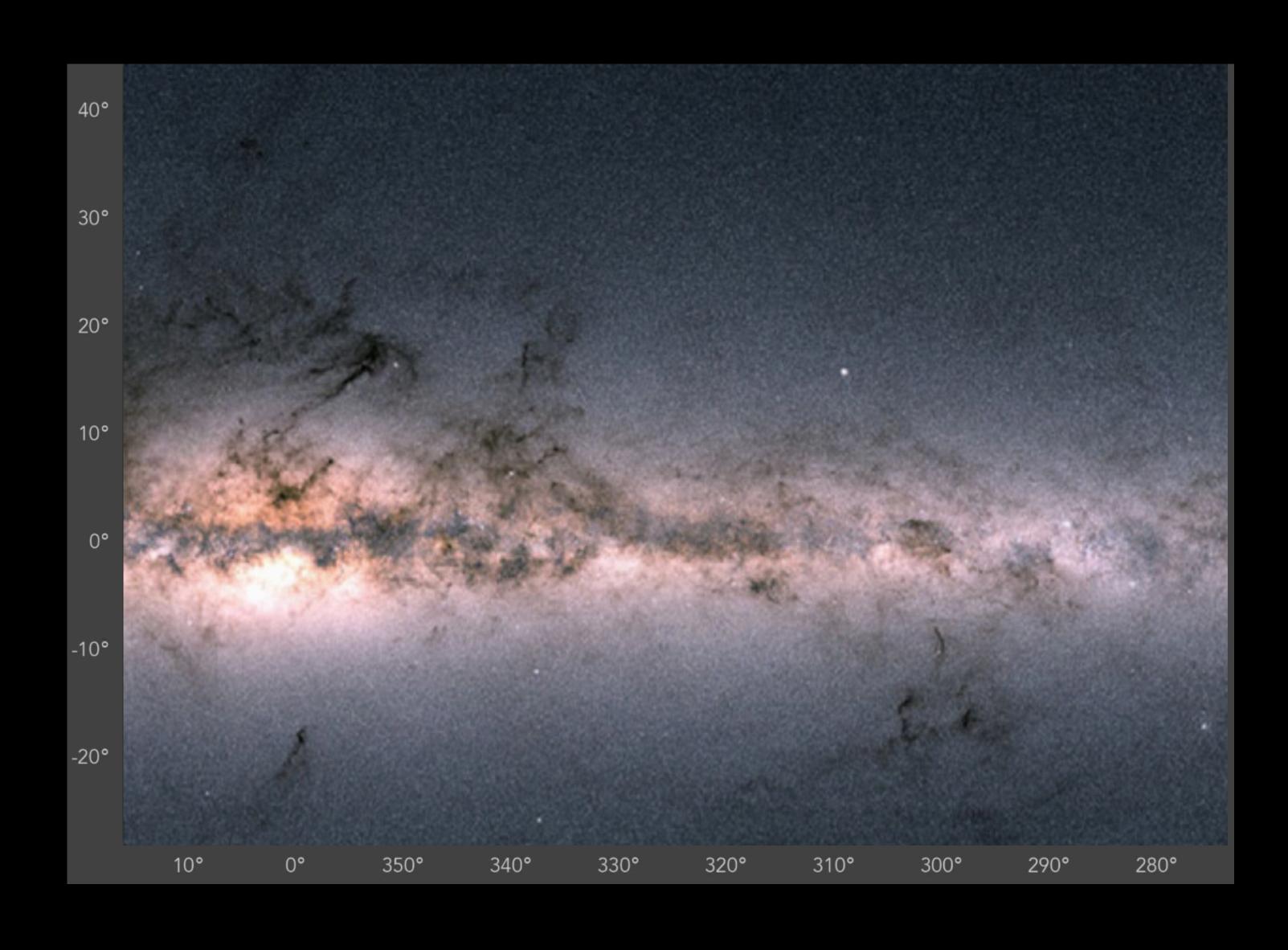
- 1. Gradient ascent step
- 2. Scan saddle points: $\max \hat{f} \to \min \hat{f}$
 - A. Test modality between modes
 - B. If H_0 cannot be rejected merge >





Results on Sco-Cen

Application to Sco-Cen OB association



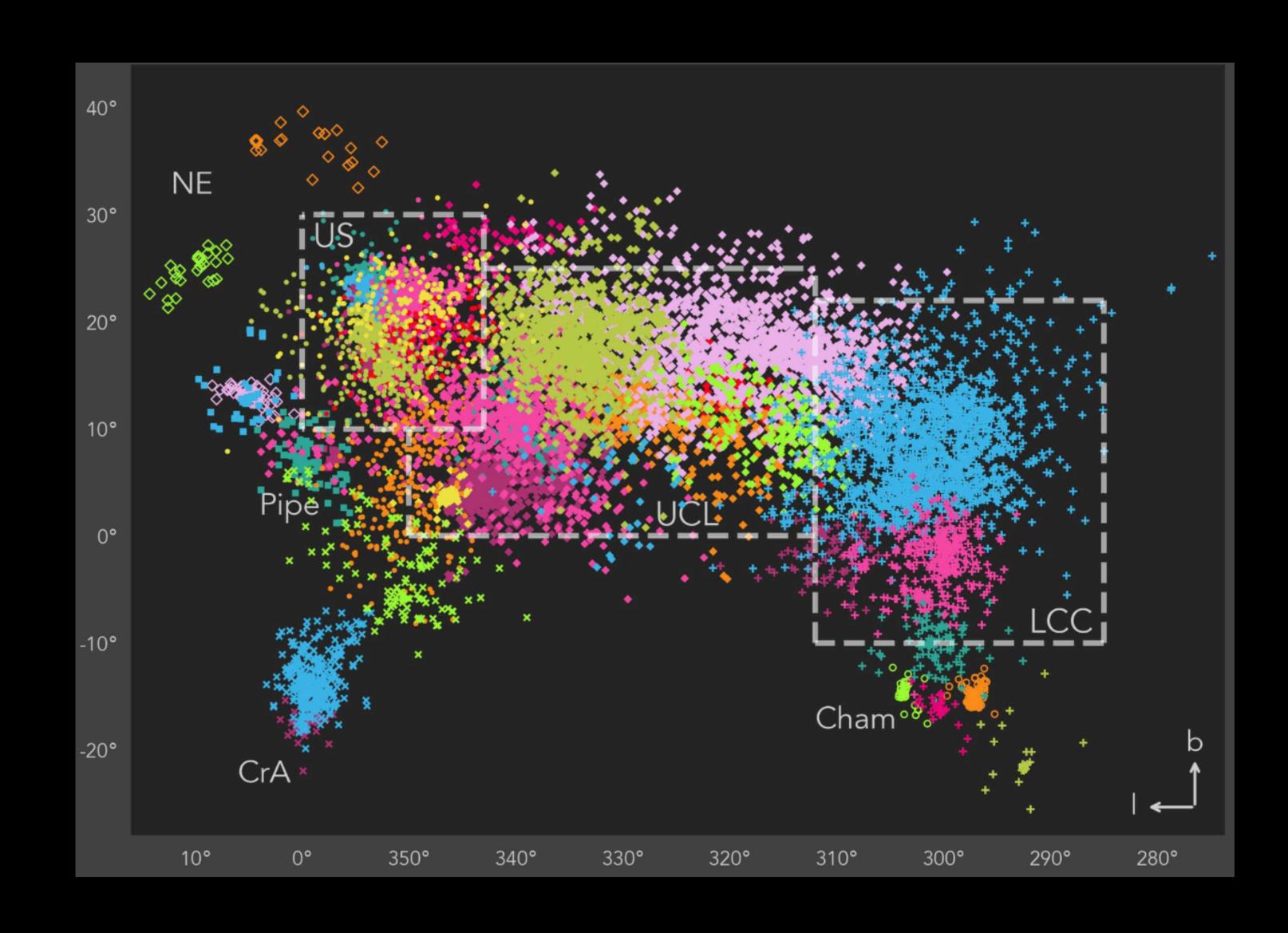
Application to Sco-Cen OB association

Consists of 37 groups

• Unseen substructure

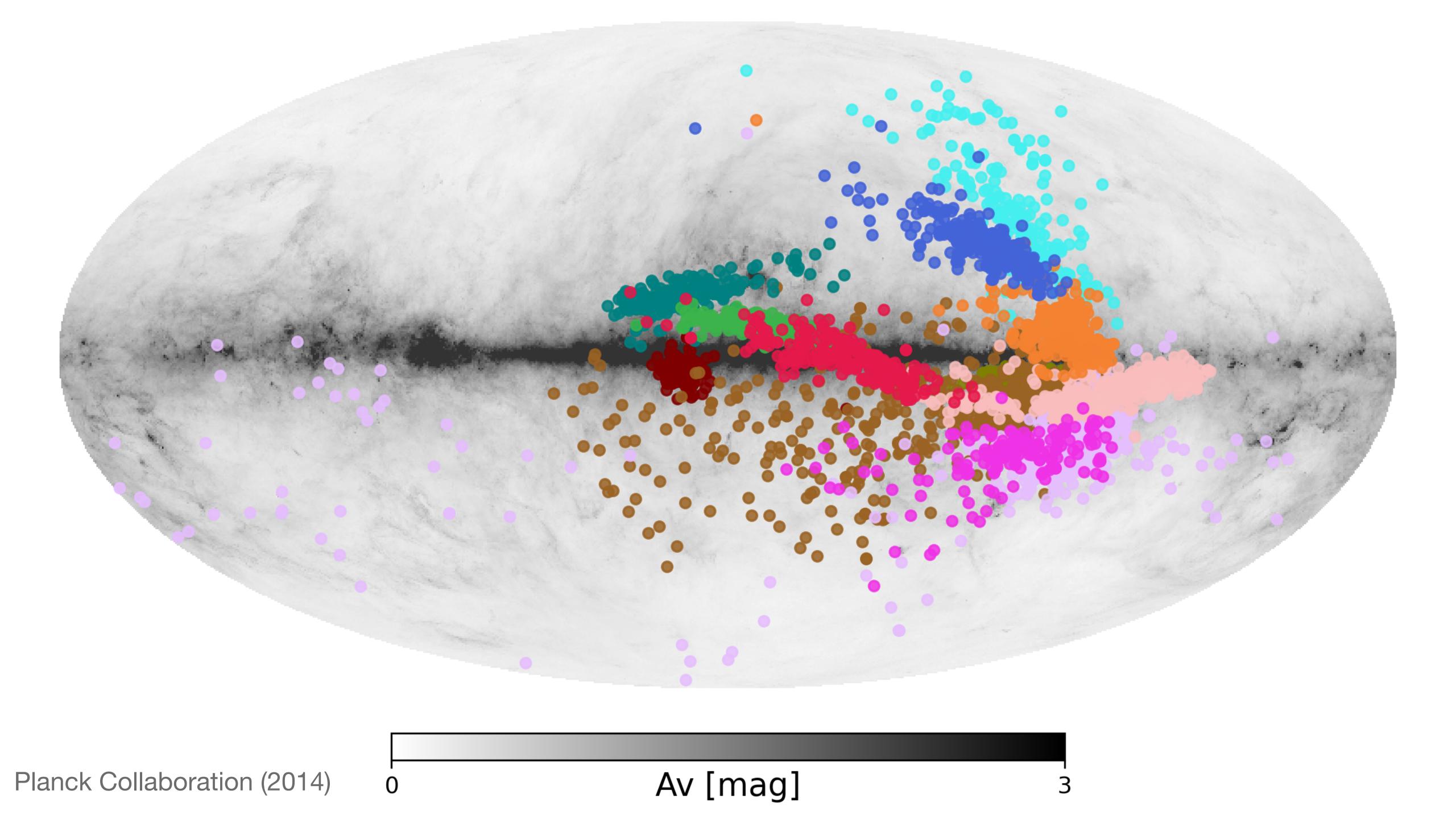
Validated via

- narrow HRD
- B stars in center



The definition of the state of

Results "around" Sco-Cen

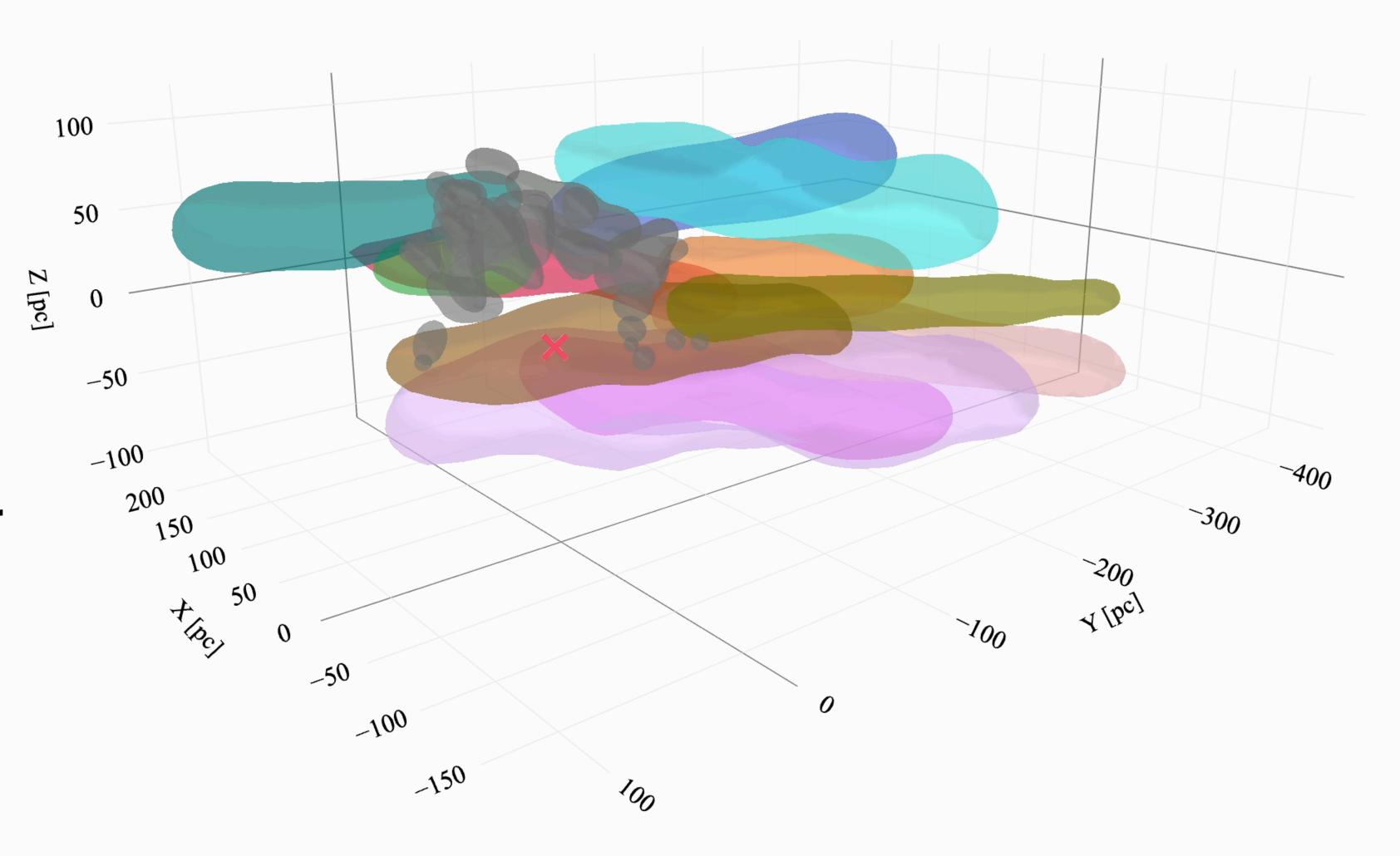


12 disk stream candidates (prelim)

Lengths between ~200 — 400 pc

Densities as low as 2 stars / 10^3 pc³

820 objects / kpc³ or 160 objects / kpc²



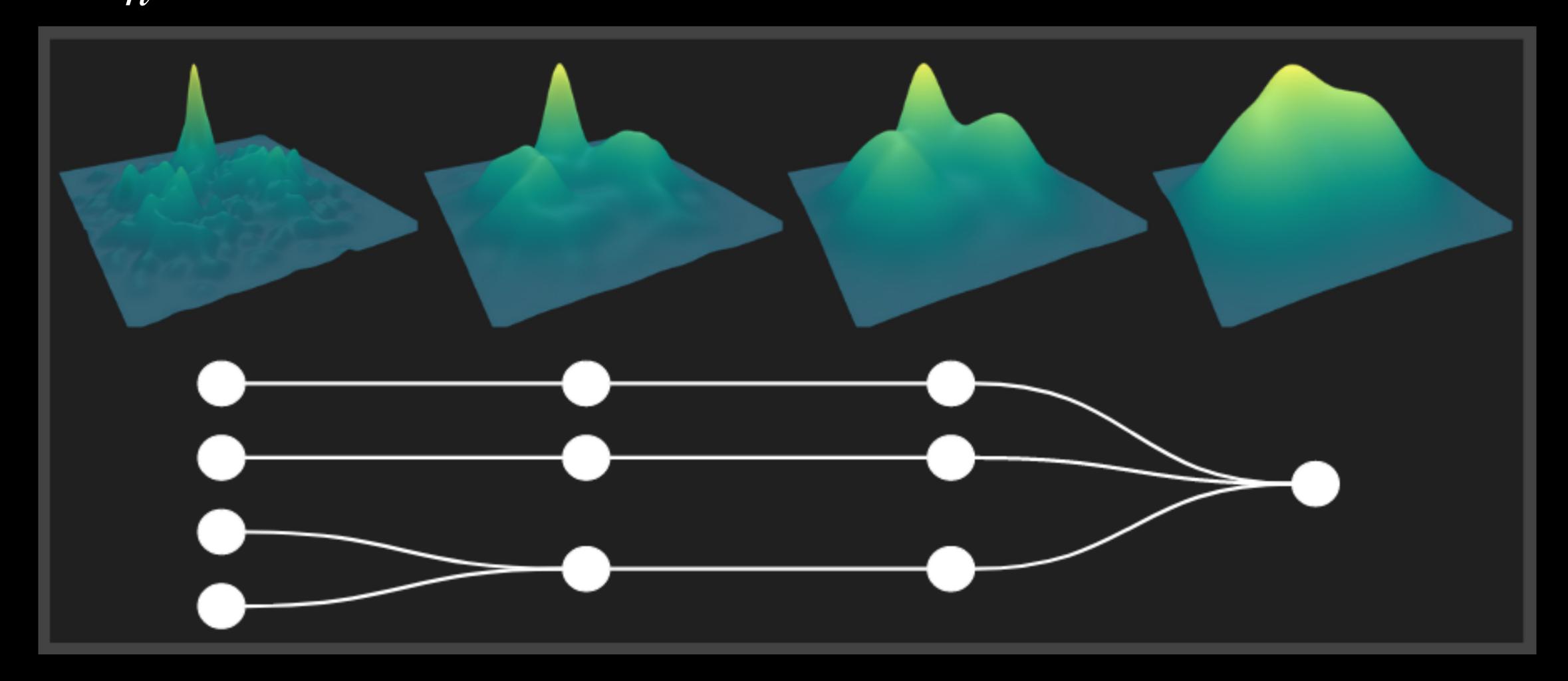
Thank you!

How to set parameters?

SigMA (k, α)

Choosing k

$$\hat{T}_n(t) \sim \mathcal{N}(0,1) \iff \log N < k < N^{4/(4+p)}$$



Choosing α

- Many hypotheses tests increases chance of false positives
- Limit proportion of false positives among all positives
 - Apply Benjamini & Hochberg procedure
 - ightharpoonup Data driven way of choosing significance α

Backup

Time complexity

Density computation (k-d tree)

mode & saddle search (union find)

$$\mathcal{O}(pN\log N) + \mathcal{O}(pN\log N) + \mathcal{O}(Nk) + \mathcal{O}(|\mathcal{S}|)$$

Graph construction

Cluster tree pruning

Robustness of $\hat{T}_n(t)$ Graph β -Skeleton Feature scaling -2 -1 0 1 2

-2 -1 0 1 2 -2 -1 0 1 2

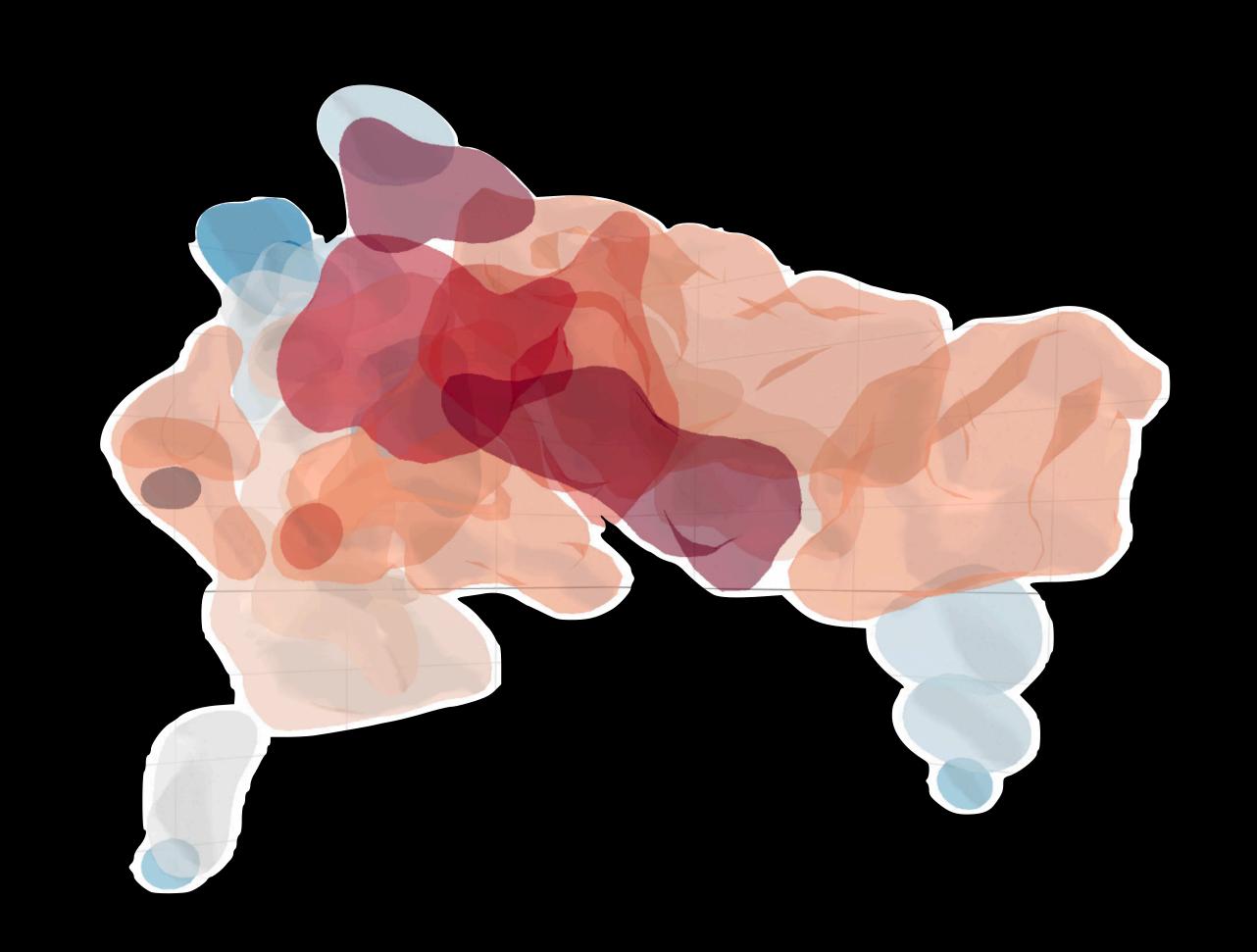
Application to Sco-Cen OB association

Consists of 37 groups

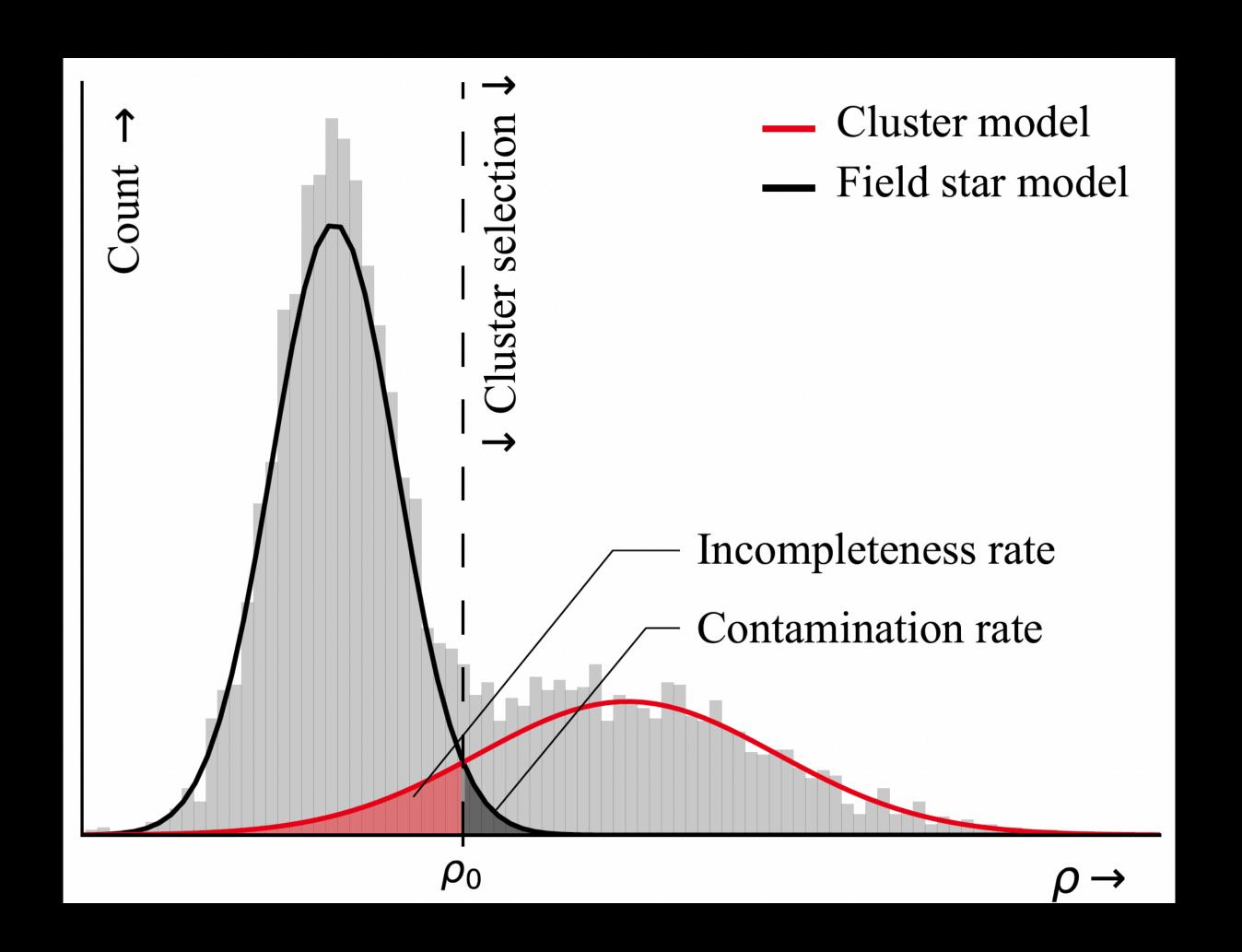
Unseen substructure

Validated via

- narrow HRD
- B stars in center
- Age gradients



Background reduction



Background reduction

