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Understanding Galactic baryon cycle

• YSOs connect cloud  stars  feedback 

• How does the Milky Way convert gas into 
stars?


• How do stars leave their birth clouds and 
shape the ISM?


• How do supernovae regulate, trigger, or 
suppress new generations of stars?

↔ ↔
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Aim to improve YSO catalog

• Employ dedicated YSO models


• Data fusion: use as many informative data sets as possible


• Produce well-calibrated posteriors over stellar parameters given 
spectra & photometric observations


• Scale inference to > 1M - 1B stars
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Challenges with “1 model does it all” approach

• Fusing surveys is hard due to different

• resolutions & depths

• coverage

• instrument response

• noise model


• Model misspecification leads to domain shift between simulated 
and real data 

 Domain-Adaptive SBI w/ incomplete, multi-survey data→



Model implementation
I. SBI model



Simulation based inference setup
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Neural posterior estimation

p(θ |x)x MLP  
(summary statistics)

Cannot deal with missing data

Conditional 
neural density 
estimator  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Attention masking: ME

Can enforce conditional independence 

Score (Diffusion) p(θ |x)



Model implementation
II. Domain adaption



Architecture

Transformer(X, θ) Score (Diffusion)



Input split into simulated, real & paired data

θ

X
Transformer DiffusionXsim

Xreal
Xsim−real−pairs



Modality encoders

X
Xs
Xr
Xs−r



Modality encoders: split into indiv. spectra
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Modality encoders: contrastive loss
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Pool embedding (mean)

Contrastive loss:  Z{xp,L,B} & Zpool

Zpool

Goal: learn shared information 
across spectra, that’s (hopefully) 
invariant of detector systems 



Modality encoders: alignment loss
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Alignment via optimal transport

Exact (c) Gromov-Wasserstein Gu et al. (2022)

Gu et al. (2022)



Additional pair constraint
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Final model

θ

X

Loss

ZA

Zpool

Zphot

+ℒC + ℒOT + ℒR−S

Transformer Diffusion(θ, Z)



Forward model



Clusters/young stars Milky Way model

• Rybizki et al. (2018)

• galaxia code

• thin+thick+halo+bulge

Nstars

θC

θS θS



Fwd model

Specta

Instrument resp.

TeffL MS

GBPGRPG KHJ

X

plx

Dust
Filter convolve
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Model differences (BaSeL)
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Model differences (Kurucz)



Results



Pilot study: Gaia+2MASS+WISE
Classic SBI, no missing data



Updated pipeline + 50% missing + XP spectra
Posterior mean sim



Without DA



With DA



Predictions
Posterior mean simPosterior mean real Posterior mean real

with domain adaptionno domain adaption



Summary

• Combine diffusion models + transformer model to learn 
arbitrary conditionals and marginals


• Add OT + pair + contrastive loss to close domain gap


• Obtain promising results on simulations



Thank you!



Backup



Quick recap
Score based diffusion models
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Langevin dynamics requires score

xt+1 = xt + ϵ ∇xlog p(x) + 2ϵ 𝒩(0, Id) …MCMC method that samples from p(x)

ℒ = 𝔼p(x)[ | |sϕ(x) − ∇log p(x) | |2
2 ] Problem 1: don’t have access to p(x)

Would like to learn this
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Training score models

© Yang Song (yang-song.net/blog/2021/score/)

Problem 2: low coverage of data space  inaccurate score→

http://yang-song.net/blog/2021/score/
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Fix: add gradual noise
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Fwd model: YSO (Robitaille17+Richardson+24)
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GBPGRPG KHJ
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plx

• Mass not input parameter

• Unlink to evo. tracks 

➡ logg = 4

➡ Small impact for 

 kK


• Low resolution (R~15)
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Model implementation
II. Learning to condition and marginalize
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TransformerX̂ Tokenizer: ̂T

Attention masking: ME

̂T ∈ (N, DX̂, E) → S ∝ QKT ∈ (N, DX̂, DX̂)

ME = (
0 0 −∞
0 0 −∞

−∞ −∞ 0 )

softmax(S + ME) V P ∈ (N, DX̂)

sME
ϕ ( ̂xMC) =

f(x, y)
f(x, y)
f(z)

∝
f(x, y) − Δx
f(x, y) − Δy
f(z) − Δz∝ ̂x0 − ̂xt̂xt ∼ pt( ̂xt | ̂x0) = 𝒩(μt( ̂x0), σt( ̂x0))



Marginalization properties
∝

f(x, y) − Δx
f(x, y) − Δy
f(z) − Δz∝ ̂x0 − ̂xt

ℒ ∝ ( f(x, y) − Δx)2 + ( f(x, y) − Δy)2 + ( f(z) − Δz)2



Marginalization properties
∝

f(x, y) − Δx
f(x, y) − Δy
f(z) − Δz∝ ̂x0 − ̂xt

= ∇log p(x, y) + ∇log p(z) = ∇log p(x, y)p(z)

ℒ ∝ ( f(x, y) − Δx)2 + ( f(x, y) − Δy)2 + ( f(z) − Δz)2 =


