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Understanding Galactic baryon cycle

Young Star (SOTA Machine Learning)

e YSOs connect cloud < stars <« feedback

' Rings of
contaminants

10 -05 00 05 10

X [kpc]



Understanding Galactic baryon cycle

e YSOs connect cloud < stars <« feedback

* How does the Milky Way convert gas into

stars?

Young Star (SOTA Machine Learning)
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Understanding Galactic baryon cycle

Young Star (SOTA Machine Learning)

e YSOs connect cloud < stars <« feedback

* How does the Milky Way convert gas into
stars?

* How do stars leave their birth clouds and | ol
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Understanding Galactic baryon cycle

Young Star (SOTA Machine Learning)

e YSOs connect cloud < stars <« feedback

* How does the Milky Way convert gas into
stars?

* How do stars leave their birth clouds and ‘
shape the ISM? - M

* How do supernovae regulate, trigger, or - Rings of
suppress new generations of stars? | contaminants
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 Employ dedicated YSO models
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Aim to improve YSO catalog

 Employ dedicated YSO models
* Data fusion: use as many informative data sets as possible

* Produce well-calibrated posteriors over stellar parameters given
spectra & photometric observations

e Scale inference to > 1M - 1B stars



Challenges with “1 model does it all” approach

* Fusing surveys is hard due to different
* resolutions & depths
* coverage
* Instrument response
* Noise model
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Challenges with “1 model does it all” approach

* Fusing surveys is hard due to different
* resolutions & depths
* coverage
* Instrument response
* Noise model

* Model misspecification leads to domain shift between simulated
and real data

— Domain-Adaptive SBIl w/ incomplete, multi-survey data



Model implementation
. SBI model



Simulation based inference setup

Simulator I*I‘: l-pﬂ——*:[n L/ZJz
q

Latent 7

Parameters ﬂ Y Oheoruatio
- qd L i § -
—_— :‘T:-P/: S

S ——
e Maechanistic forward model

Prediction: .
» We can generate samples from a simulator x ~ p(x | 8)

(—
Likelihood p(x | 0) = sz p(x, z|0) is intractable

Inference:
 Inference is challenging

© Siddharth Mishra-Sharma



Neural posterior estimation

Conditional
X - MLP " neural density p(e | X)
estimator



Neural posterior estimation

Conditional
- MLP " neural density p(e | X)
estimator

~ Cannot deal with missing data



Simformer: learning with incomplete data

X — Transformer

Attention masking: M.

Gloeckler et al. (2024)



Simformer: learning with incomplete data

X — Transformer — Score (Diffusion) p(@ |X)

Attention masking: M.

Gloeckler et al. (2024)



Model implementation
ll. Domain adaption



Architecture

(X, 9) — Transformer — Score (Diffusion)



Input split into simulated, real & paired data
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Modality encoders



Modality encoders: split into Indiv. spectra

Apogee
Boss

Lamost
XS XP
Photometry

Gaia, 2Mass, ...



Modality encoders: encode

Encoder
Apogee - ZA
Boss - 70
Lamost - 7+
X XP . 7P
Photometry

Gaia, 2Mass, ... — Z°



Modality encoders: contrastive loss

Encoder
Apogee - 75
Boss - 78 ]
-amost - Zy (2> Pool embedding (mean)
Xs XP R ZSXPJ
Contrastive loss: zi*p.L.-B} & 7zpool
Photometry

Goal: learn shared information
Gaia, 2Mass, ... — ZSG across spectra, that’s (hopefully)
invariant of detector systems



Modality encoders: alignment loss

Encoder
Apogee - ZA
Lamost - 7L 5 VAs

 2Xp 7Xp
XS X Z OT losses r

Photometry

Gaia, 2Mass, ... — Z° 76



Alignment via optimal transport
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(a) Samples (b) Exact (¢) Gromov-Wasserstein Gu et al. (2022)

Gu et al. (2022)



Additional pair constraint

Encoder
Apogee - ZA
Boss - 73
Lamost - 7+
X XP . 7P

Photometry

Gaia, 2Mass, ... —



Final model

v

N (0,7Z) — Transformer — Diffusion
V4
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Forward model



Clusters/young stars

@

stars

Milky Way model

* Rybizki et al. (2018)
* galaxia code
* thin+thick+halo+bulge



Fwd model
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Fwd model
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Model differences (BaSel.)

logTeff = 3.47 | Av = 0.97 mag
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Model differences (Kurucz)
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Results



Pilot study: Gaia+2MASS+WISE

Existing Classic SBI, no missing data

Fiducial
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True logAge (dex)



Updated pipeline + 50% missing + XP spectra

Posterior mean sim
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Pred logip (Age) [yr]

Predictions

Posterior mean real Posterior mean real Posterior mean sim
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Summary

e Combine diffusion models + transformer model to learn
arbitrary conditionals and marginals

 Add OT + pair + contrastive loss to close domain gap

* Obtain promising results on simulations



Thank you!
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Quick recap
Score based diffusion models



Rossky, Doll & Friedman (1978)

Langevin dynamics Besag (1994)

Roberts & Tweedie (1996)

X, =X, +eV.diogpx) +4/2¢ 4(0,1;) ...MCMC method that samples from p(X)



Rossky, Doll & Friedman (1978)

Langevin dynamics Besag (1994
Roberts & Tweedie (1996)
X, =X, +eV.diogpx) +4/2¢ 4(0,1;) ...MCMC method that samples from p(X)

© Roy Friedman (friedmanroy.github.io/)



https://friedmanroy.github.io/blog/2022/Langevin/

Rossky, Doll & Friedman (1978)

Langevin dynamics Besag (1994
Roberts & Tweedie (1996)
X1 =X, +eV.]ogpx) +1/2e 4(0,1;) ...MCMC method that samples from p(Xx)

© Roy Friedman (friedmanroy.github.io/)
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Langevin dynamics requires score

X, =X, +eV.diogpx) +4/2¢ 4(0,1;) ...MCMC method that samples from p(X)

Would like to learn this

Z =E,xllls4(x) — Vlog p(x) | \%] Problem 1: don’t have access to p(X)




Estimating the score  Z=FE,ull1sx - Viogpx|[;]

Problem 1: don’t have access to p(X)

Vincent (2010) “A Connection Between Score Matching and Denoising Autoencoders”

L = Eyopin.on ol | 155&) — Vilog p(X[x) ] [5]
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Estimating the score  Z=FE,ull1sx - Viogpx|[;]

Problem 1: don’t have access to p(X)

Vincent (2010) “A Connection Between Score Matching and Denoising Autoencoders”

S =

~ ~ 2
"XNp(X),nga(mX)H |S¢(X) — Vilogp(X|x) | 5]

. .
Z = _x~p(x),5‘<~pa(i|X)H ‘S(/ﬁ(x) B _2(X — X1 A

pX]X) = H(X|x,06%1) Scb(’f)/ °
X — X

O



Training score models

Problem 2: low coverage of data space — inaccurate score

Data scores Estimated scores

Data density

..:

\\\\\

\\\\\

I' . « ‘. .

I:loass\\l

1z 228 0 v

© Yang Song (yang-song.net/blog/2021/score/)
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Training score models: multiple noise levels

- ~ 2
Z = Expw, sp@ima~a ol HSpE: 1) = Velog p(X[X) [

o< 02 < 03

Fix: add gradual noise

pAX|X) = N (x| plx), 0,x))

© Yang Song (yang-song.net/blog/2021/score/)
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Training score models: multiple noise levels

- ~ 2
Z = Expw, sp@ima~a ol HSpE: 1) = Velog p(X[X) [

01 < 02 <

Fix: add gradual noise

pAX|X) = N (x| plx), 0,x))

------

Sampling via annealed Langevin dynamics

© Yang Song (yang-song.net/blog/2021/score/)
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Training score models: multiple noise levels

- ~ 2
Z = Expw, sp@ima~a ol HSpE: 1) = Velog p(X[X) [

01 g 02 g

Fix: add gradual noise

pAX|X) = N (x| plx), 0,x))

------

Sampling via annealed Langevin dynamics

© Yang Song (yang-song.net/blog/2021/score/)
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Training score models: multiple noise levels

- ~ 2
Z = Expw, sp@ima~a ol HSpE: 1) = Velog p(X[X) [

01 < 02 <

pt(i | X) — '/’/(56 ‘ //tt(X), Ut(X)) : @ 1 . |

Fix: add gradual noise

Sampling via annealed Langevin dynamics

© Yang Song (yang-song.net/blog/2021/score/)
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YSO models



Fwd model: YSO (Robitaille17+Richardson+24)

* Mass not input parameter

e Unlink to evo. tracks @ @ (C>
= logg = 4 -

= Small impact for

T. € [3,20] kK \/
* Low resolution (R~15) @ @ @ @




Fwd model: YSO (Robitaille17+Richardson+24)

* Mass not input parameter
* Unlink to evo. tracks
= logg =4

= Small impact for
I € [3,20] kK

* Low resolution (R~15)

* Introduces many additional
parameters

IO

Parameter Symbol Minimum Maximum Sampling
Stellar radius R, 0.1Rg 100 Ry Log
Stellar temperature T 2000K 30000 K Log
Disk mass [dust] Mg 1073 M, 0.1 M, Log
Disk inner radius Rfrin.srlf Ry 1000 Ryyp Log
Disk outer radius RUisk 50 AU 5000 AU Log
Disk flaring power B | 1.3 Linear
Disk surface density power p -2 0 Linear
Disk scaleheight Nn100AU 1 AU 20 AU Log
Envelope density [dust] o 107** g/cm® 107'° g/cm’ Log
Envelope density power 0% -2 -1 Linear
Envelope centrifugal radius R, 50 AU 5000 AU Log
Cavity density [dust] P 102 g/cm® 1072 g/cm’ Log
Cavity opening angle Go 0° 60° Linear
Cavity power C | 2 Linear

DOGC000 -



Fwd model: YSO (Robitaille17+Richardson+24)

OIOIIO

* Mass not input parameter

. Parameter Symbol Minimum Maximum Sampling
° U n | I n k tO eVO . traC kS Stellar radius R, 0.1 Rs 100 R4 Log
Stellar temperature T 2000K 30000 K Log
- — Disk mass [dust] Mg 1073 M, 0.1 M, Log
I O g g 4 Disk inner radius Rfrin.srlf Ry 1000 Rgyp Log
. Disk outer radius RUisk 50 AU 5000 AU Log
‘ S m al I I m paCt fO r Disk flaring power B | 1.3 Linear
Disk surface density power p -2 0 Linear
T E [ 3 20] k K Disk scaleheight Nn100AU 1 AU 20 AU Log
€ff ? Envelope density [dust] o 107** g/cm® 107'° g/cm’ Log
Envelope density power 0% -2 -1 Linear
. Envelope centrifugal radius R, 50 AU 5000 AU Log
‘ LOW reSOI Ut |ON (R~ 1 5) Cavity density [dust] P 102 g/cm® 1072 g/cm’ Log
Cavity opening angle Go 0° 60° Linear
Cavity power C | 2 Linear

* Introduces many additional

parameters @@@@
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logR: -0.3
Inclination: 42.2
ApertureAU: 143845.0 AU
logDiskMass: -1.6
logDiskRmax: 2.1
DiskBeta: 1.1

DiskP: -0.5
logDiskH100: 1.0
logEnvRhoO: -23.5
CavityPow: 1.2
CavityThetaO: 45.3
logCavityRhoO: -21.6
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Stellar radius R, 0.1Rg 100 Ry Log
Stellar temperature Ty 2000 K 30000 K Log
Disk mass [dust] Mg 1073 M, 0.1 M, Log
Disk inner radius Rfriu.srlf Ry 1000 Ryyp Log
Disk outer radius RUisk 50 AU 5000 AU Log
Disk flaring power B | 1.3 Linear
Disk surface density power p -2 0 Linear
Disk scaleheight h100AU 1 AU 20 AU Log
Envelope density [dust] o 107** g/cm® 107'° g/cm’ Log
Envelope density power 0% -2 -1 Linear
Envelope centrifugal radius R, 50 AU 5000 AU Log
Cavity density [dust] P 102 g/cm® 1072 g/cm’ Log
Cavity opening angle Go 0° 60° Linear
Cavity power C | 2 Linear
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Fwd model: YSO (Robitaille17+Richardson+24)
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Stellar radius R, 0.1Rg 100 Ry Log
Stellar temperature Ty 2000 K 30000 K Log
Disk mass [dust] Mg 1073 M, 0.1 M, Log
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Fwd model: YSO (Robitaille17+Richardson+24)
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logT: 3.8

logR: 1.0
Inclination: 70.3
ApertureAU: 162.4 AU
logDiskMass: -3.2
logDiskRmax: 2.5
DiskBeta: 1.1

DiskP: -0.7
logDiskH100: 0.5
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CavityThetaO: 14.8
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Parameter Symbol Minimum Maximum Sampling
Stellar radius R, 0.1Rg 100 Ry Log
Stellar temperature Ty 2000 K 30000 K Log
Disk mass [dust] Mg 1073 M, 0.1 M, Log
Disk inner radius Rfriu.srlf Ry 1000 Ryyp Log
Disk outer radius RUisk 50 AU 5000 AU Log
Disk flaring power B | 1.3 Linear
Disk surface density power p -2 0 Linear
Disk scaleheight h100AU 1 AU 20 AU Log
Envelope density [dust] o 107** g/cm® 107'° g/cm’ Log
Envelope density power 0% -2 -1 Linear
Envelope centrifugal radius R, 50 AU 5000 AU Log
Cavity density [dust] P 102 g/cm® 1072 g/cm’ Log
Cavity opening angle Go 0° 60° Linear
Cavity power C | 2 Linear
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Fwd model: YSO (Robitaille17+Richardson+24)
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Stellar radius R, 0.1Rg 100 Ry Log
Stellar temperature Ty 2000 K 30000 K Log
Disk mass [dust] Mg 1073 M, 0.1 M, Log
Disk inner radius Rfriu.srlf Ry 1000 Ryyp Log
Disk outer radius RUisk 50 AU 5000 AU Log
Disk flaring power B | 1.3 Linear
Disk surface density power p -2 0 Linear
Disk scaleheight h100AU 1 AU 20 AU Log
Envelope density [dust] o 107** g/cm® 107'° g/cm’ Log
Envelope density power 0% -2 -1 Linear
Envelope centrifugal radius R, 50 AU 5000 AU Log
Cavity density [dust] P 102 g/cm® 1072 g/cm’ Log
Cavity opening angle Go 0° 60° Linear
Cavity power C | 2 Linear




Flux [erg/s/cm2/AA]
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Fwd model: YSO (Robitaille17+Richardson+24)
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logT: 3.7

logR: 0.6
Inclination: 76.1
ApertureAU: 54555.9 AU
logDiskMass: -2.1
logDiskRmax: 3.2
DiskBeta: 1.2

DiskP: -0.7
logDiskH100: 0.9
logEnvRhoO: -19.3
CavityPow: 1.9
CavityThetaO: 5.6
logCavityRhoO: -22.8

103

104

10°
Wavelength [AA]

10°

10’

108

Parameter Symbol Minimum Maximum Sampling
Stellar radius R, 0.1Rg 100 Ry Log
Stellar temperature Ty 2000 K 30000 K Log
Disk mass [dust] Mg 1073 M, 0.1 M, Log
Disk inner radius Rfriu.srlf Ry 1000 Ryyp Log
Disk outer radius RUisk 50 AU 5000 AU Log
Disk flaring power B | 1.3 Linear
Disk surface density power p -2 0 Linear
Disk scaleheight h100AU 1 AU 20 AU Log
Envelope density [dust] o 107** g/cm® 107'° g/cm’ Log
Envelope density power 0% -2 -1 Linear
Envelope centrifugal radius R, 50 AU 5000 AU Log
Cavity density [dust] P 102 g/cm® 1072 g/cm’ Log
Cavity opening angle Go 0° 60° Linear
Cavity power C | 2 Linear




Flux [erg/s/cm2/AA]
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Fwd model: YSO (Robitaille17+Richardson+24)
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logT: 4.5

logR: 0.5
Inclination: 87.0
ApertureAU: 20691.4 AU
logDiskMass: -3.0
logDiskRmax: 2.3
DiskBeta: 1.1

DiskP: -0.4
logDiskH100: 0.4
logEnvRhoO: -19.6
CavityPow: 1.5
CavityThetaO: 30.0
logCavityRhoO: -22.8

103

104

10°
Wavelength [AA]

10°

10’

108

Parameter Symbol Minimum Maximum Sampling
Stellar radius R, 0.1Rg 100 Ry Log
Stellar temperature Ty 2000K 30000 K Log
Disk mass [dust] Mg 1073 M, 0.1 M, Log
Disk inner radius Rfriu.srlf Ry 1000 Ryyp Log
Disk outer radius RUisk 50 AU 5000 AU Log
Disk flaring power B | 1.3 Linear
Disk surface density power p -2 0 Linear
Disk scaleheight h100AU 1 AU 20 AU Log
Envelope density [dust] o 107** g/cm® 107'° g/cm’ Log
Envelope density power 0% -2 -1 Linear
Envelope centrifugal radius R, 50 AU 5000 AU Log
Cavity density [dust] P 102 g/cm® 1072 g/cm’ Log
Cavity opening angle Go 0° 60° Linear
Cavity power C | 2 Linear




Flux [erg/s/cm2/AA]
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Fwd model: YSO (Robitaille17+Richardson+24)

[\
o

p—
(NS)

—
N

p—
(@)

p—
(@0]

ApertureAU: 33598.2 AU

logT: 3.5
logR: 1.3
Inclination: 12.1

logDiskMass: -2.4
logDiskRmax: 2.2
DiskBeta: 1.2

DiskP: -0.2
logDiskH100: 1.2
logEnvRhoO: -19.5
CavityPow: 1.9
CavityThetaO: 0.8
logCavityRhoO: -22.1

103

104

10° 10°
Wavelength [AA]

107 108

Parameter Symbol Minimum Maximum Sampling
Stellar radius R, 0.1Rg 100 Ry Log
Stellar temperature Ty 2000 K 30000 K Log
Disk mass [dust] Mg 1073 M, 0.1 M, Log
Disk inner radius Rfriu.srlf Ry 1000 Ryyp Log
Disk outer radius RUisk 50 AU 5000 AU Log
Disk flaring power B | 1.3 Linear
Disk surface density power p -2 0 Linear
Disk scaleheight h100AU 1 AU 20 AU Log
Envelope density [dust] o 107** g/cm® 107'° g/cm’ Log
Envelope density power 0% -2 -1 Linear
Envelope centrifugal radius R, 50 AU 5000 AU Log
Cavity density [dust] P 102 g/cm® 1072 g/cm’ Log
Cavity opening angle Go 0° 60° Linear
Cavity power C | 2 Linear




YSO (Robitaille17+Richardson+24)

Model set Icon Star Disk Envelope Cavity Ambient Inner radius Variables Models
S-s-1 yes 10000
sp-s-1 . - yes passive Ryub 10000
sp-h-1 | yes passive variable 10 000
s-smi yes yes Rqub 10000
Sp-smil | _EE | yes passive yes Roub 10000
sp-hmi - d yes passive yes variable 10 000



ol i

sp-hmi

S-p-smi

s-p-hmi

s-pbsmi

s-pbhmi

S-u-smi

s-u-hmi

s-ubsmi

s-ubhmi

]UD

yes

yes

yes

yes

yes

yes

yes

yes

yes

PGDDI Y

passive

power-law

power-law

power-law

power-law

Ulrich

Ulrich

Ulrich

Ulrich

yes

yes

yes

yes

jUD

yes

yes

yes

yes

yes

yes

yes

yes

yes

£sub

variable

variable

variable

variable

Rsub

variable

4V UV

10000

10000

10000

10000

10000

10000

10000

10000

10000



s-pbhmi yes e power-law yes yes variable 8 10 000
S-u-smi yes e Ulrich . yes Rqub 4 10000
s-u-hmi yes . Ulrich e yes variable 5 10000
s-ubsmi yes e Ulrich yes yes Rqub 7 10 000
s-ubhmi yes e Ulrich yes yes variable 8 10000
spu-smi yes passive Ulrich yes Rgub 8 10 000
spu-hmi yes passive Ulrich yes variable 9 10 000
spubsmi yes passive Ulrich yes yes Rqub 11 40 000
spubhmi yes passive Ulrich yes yes variable 12 80000




YSO (Robitaille17+Richardson+24)

sp-h-1

S-smil

sp-hmi

spubhmi

yes

yes

yes

yes

passive

passive

passive

Ulrich

yes

yes

yes

yes

variable

variable

variable

8

12

10 000

10 000

10000

80000



Model implementation

ll. Learning to condition and marginalize



Conditional properties: 3D example

£(h, M, x) = (1 = M¢) X (s5,(x) — Vlog p(x)) X=(x,y,2) My=(0,0,1)



Conditional properties: 3D example

£(h, M, x) = (1 = M¢) X (s5,(x) — Vlog p(x)) X=(x,y,2) My=(0,0,1)

log p(x,y,z) = logp(x,y|z) + log p(z)



Conditional properties: 3D example

£(h, M, x) = (1 = M¢) X (s5,(x) — Vlog p(x)) X=(x,y,2) My=(0,0,1)

log p(x,y,z) = logp(x,y|z) + log p(z)

Vlog p(x,y,z) = Vlogp(x,y|z) + Vlog p(z)



Conditional properties: 3D example

£(h, M, x) = (1 = M¢) X (s5,(x) — Vlog p(x)) X=(x,y,2) My=(0,0,1)

log p(x,y,z) = logp(x,y|z) + log p(z)

Vlog p(x,y,z) = Vlogp(x,y|z) + Vlog p(z)

V. logplx,y|z) + V, logp(z) = V, logp(x,y|z)



Conditional properties: 3D example

£(h, M, x) = (1 = M¢) X (s5,(x) — Vlog p(x)) X=(x,y,2) My=(0,0,1)

log p(x,y,z) = logp(x,y|z) + log p(z)

Vlog p(x,y,z) = Vlogp(x,y|z) + Vlog p(z)
Vx,yl()gp(-xay ‘ z) + Vx,yIng(Z) — Vx,yIOgP(X,y ‘ 2)

V logp(x,y|z) + V logp(z) < Is setto O dueto (1 — M) in &



Marginalization properties Attention masking: M,
~ l

X  Tokenizer: T — Transformer




Marginalization properties

Attention masking: M.
n l

X  Tokenizer: T — Transformer

T € (N,D;,E) - S x QKT € (N, Dg, Dy)
softmax(S + M) VP € (N, D)

O O — OO f(xay)
ME:( 0 0 —00) ' SfE(J?MC)= Jx,y)
—o0 —oco 0 f(2)




Marginalization properties Attention masking: M,
~ l

X  Tokenizer: T — Transformer

T € (N,D;,E) - S x QKT € (N, Dg, Dy)
softmax(S + M) VP € (N, D)

O O — OO f(xay)
ME:( 0 0 —00) ' SfE(J?MC)= Jx,y)
-0 —oo 0 f(2)

f(xa y) — Ax
6, M, t, %o, %e) = (1= Mo) - (53" (%17, 1) = Vi, log pu(kul%0) ) o | flx, y) — Ay
x X, — %, f(z) — Az

X, ~ PX | Xp) = N (pfXp), 0,(Xp))



Marginalization properties

f('xa y) I Ax
U, Mo, t, %0, %e) = (1 — Mc) - (s)'7 (%11, 1) — Vs, logpi(%e[%0) ) & | flx, y) — Ay
x X, — %, f(2) — Az

L & (fx,y) — Ax)* + (flx,y) — Ay)* + (f(z) — Az)*



Marginalization properties

f('xa y) I Ax
U, Mo, t, %0, %e) = (1 — Mc) - (s)'7 (%11, 1) — Vs, logpi(%e[%0) ) & | flx, y) — Ay
x X, — %, f(2) — Az

L & (flx,y) = Ax)* + (flx,y) — Ay)* + (f(z) — Az)* =

= Vlogp(x,y) + Vlog p(z) = Vlog p(x, y)p(z)



