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Understanding Galactic baryon cycle

• YSOs connect cloud  stars  feedback 

• How does the Milky Way convert gas into 
stars?


• How do stars leave their birth clouds and 
shape the ISM?


• How do supernovae regulate, trigger, or 
suppress new generations of stars?

↔ ↔



Untapped potential of current methods

• Dedicated YSO models not employed



Untapped potential of current methods

• Dedicated YSO models not employed


• Simple binary NN classifier and age regressor trained on 
mock data — no probabilistic approach



Untapped potential of current methods

• Dedicated YSO models not employed


• Simple binary NN classifier and age regressor trained on 
mock data — no probabilistic approach


• Limited SED coverage with Gaia+2MASS+WISE photometry

MIR

NIR

Optical

X-ray

Birth 60 Myr
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What do we want

• Produce well-calibrated stellar parameter predictions


• Data fusion: use as many informative data sets as possible


• Posteriors over stellar parameters given spectra & photometric 
observations of individual stars


• Scale inference to > 1M - 1B stars
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Challenges with “1 model does it all” approach

• Fusing surveys is hard due to different

• resolutions & depths

• coverage

• instrument response

• noise model


• Model misspecification leads to domain shift between simulated 
and real data


 Domain-Adaptive SBI w/ incomplete, multi-survey data→



Model implementation
I. SBI model



Simformer: learning with incomplete data

θ

X
(X, θ) → X̂

X̂ ∈ (N, dx + Dθ = DX̂)Shape

Inputs: θ, X
Gloeckler et al. (2024)



Simformer: learning with incomplete data

Shape X̂ ∈ (N, DX̂) → ̂T ∈ (N, DX̂, EV + Eid+

Value emb ID emb Conditional state emb

Tokenizer: ̂TX̂

Inputs: θ, X, MC ∈ {0,1}DX

EC )

Gloeckler et al. (2024)



Simformer: learning with incomplete data

Transformer

Shape ̂T ∈ (N, DX̂, E) → S ∝ QKT ∈ (N, DX̂, DX̂)

Q = ̂TWQ ∈ (N, DX̂, dv)

Tokenizer: ̂T

WQ, WK, WV ∈ (E, dv)

X̂

Inputs: θ, X, MC ∈ {0,1}DX

ϕ :Gloeckler et al. (2024)



Simformer: learning with incomplete data

Shape S → S + ME

TransformerX̂ Tokenizer: ̂T

WQ, WK, WV

Inputs: θ, X, MC, ME ∈ (N, DX̂, DX̂)
ϕ :

Attention masking: ME

Gloeckler et al. (2024)



Simformer: learning with incomplete data

Shape sME
ϕ ( ̂xMC) ↦ softmax(S + ME) V P

TransformerX̂ Tokenizer: ̂T

V = ̂TWv ∈ (DX̂, dv)

Attention masking: ME

WQ, WK, WV, P ∈ (dv,1)
Inputs: θ, X, MC, ME
ϕ :

Score (Diffusion) ∈ (N, DX̂)

Gloeckler et al. (2024)



Quick recap
Score based diffusion models
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Langevin dynamics requires score

xt+1 = xt + ϵ ∇xlog p(x) + 2ϵ 𝒩(0, Id) …MCMC method that samples from p(x)
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ℒ = 𝔼x∼p(x), x̃∼pσ(x̃|x)[ | |sϕ(x̃) −
1
σ2

(x − x̃) | |2
2 ] x

x̃ − x

x̃
sϕ(x̃)pσ(x̃ |x) = 𝒩(x̃ |x, σ21d)

Estimating the score



Training score models

© Yang Song (yang-song.net/blog/2021/score/)

Problem 2: low coverage of data space  inaccurate score→

?

http://yang-song.net/blog/2021/score/
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Fix: add gradual noise
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pt(x̃ |x) = 𝒩(x̃ |μt(x), σt(x))

Training score models: multiple noise levels
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Model implementation
II. Learning to condition and marginalize



Simformer: learning with incomplete data

Shape sME
ϕ ( ̂xMC) ↦ softmax(S + ME) V P

TransformerX̂ Tokenizer: ̂T

V = ̂TWv ∈ (DX̂, dv)

Attention masking: ME

WQ, WK, WV, P ∈ (dv,1)
Inputs: θ, X, MC, ME
ϕ :

Score (Diffusion) ∈ (N, DX̂)

Gloeckler et al. (2024)



Given Score model:


 

Training

sME
ϕ ( ̂xMC)

Gloeckler et al. (2024)



Given Score model:


1. Add noise acc. to noise schedule


 

Training

̂xMC
t = (1 − MC) ̂xt + MC ̂x0

sME
ϕ ( ̂xMC)

̂xt ∼ pt( ̂xt | ̂x0) = 𝒩(μt( ̂x0), σt( ̂x0))

Gloeckler et al. (2024)
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2. Compute denoising loss


 

Training
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t = (1 − MC) ̂xt + MC ̂x0

sME
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With  score approximates any conditionalMC

With  score approximates any marginalME

Gloeckler et al. (2024)



Model implementation
II. Learning to condition and marginalize



Conditional properties: 3D example

ℓ(ϕ, MC, x) = (1 − MC) × (sϕ(x) − ∇log p(x)) x = (x, y, z) MC = (0,0,1)
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Conditional properties: 3D example

log p(x, y, z) = log p(x, y |z) + log p(z)

∇log p(x, y, z) = ∇log p(x, y |z) + ∇log p(z)

∇x,ylog p(x, y |z) + ∇x,ylog p(z) = ∇x,ylog p(x, y |z)

∇zlog p(x, y |z) + ∇zlog p(z) ← Is set to 0 due to  in (1 − MC) ℓ

MC = (0,0,1)ℓ(ϕ, MC, x) = (1 − MC) × (sϕ(x) − ∇log p(x)) x = (x, y, z)
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Marginalization properties
TransformerX̂ Tokenizer: ̂T

Attention masking: ME

̂T ∈ (N, DX̂, E) → S ∝ QKT ∈ (N, DX̂, DX̂)

ME = (
0 0 −∞
0 0 −∞

−∞ −∞ 0 )

softmax(S + ME) V P ∈ (N, DX̂)

sME
ϕ ( ̂xMC) =

f(x, y)
f(x, y)
f(z)

∝
f(x, y) − Δx
f(x, y) − Δy
f(z) − Δz∝ ̂x0 − ̂xt̂xt ∼ pt( ̂xt | ̂x0) = 𝒩(μt( ̂x0), σt( ̂x0))



Marginalization properties
∝

f(x, y) − Δx
f(x, y) − Δy
f(z) − Δz∝ ̂x0 − ̂xt

ℒ ∝ ( f(x, y) − Δx)2 + ( f(x, y) − Δy)2 + ( f(z) − Δz)2



Marginalization properties
∝

f(x, y) − Δx
f(x, y) − Δy
f(z) − Δz∝ ̂x0 − ̂xt

= ∇log p(x, y) + ∇log p(z) = ∇log p(x, y)p(z)

ℒ ∝ ( f(x, y) − Δx)2 + ( f(x, y) − Δy)2 + ( f(z) − Δz)2 =



Model implementation
III. Domain adaption



Architecture

θ

X

Transformer(X, θ) Score (Diffusion)



Input split into simulated, real & paired data

θ

X
Transformer DiffusionXsim

Xreal
Xsim−real−pairs



Modality encoders

X
Xs
Xr
Xs−r



Modality encoders: split into indiv. spectra

Xs
Lamost

Apogee
Boss

XP

Photometry


Gaia, 2Mass, …



Modality encoders: encode

Xs
Lamost

Apogee
Boss

XP

Photometry


Gaia, 2Mass, …

Encoder
ZA

s
ZB

s
ZL

s
Zxp

s

ZG
s

…



Modality encoders: contrastive loss

Xs
Lamost

Apogee
Boss

XP

Photometry


Gaia, 2Mass, …

Encoder
ZA

s
ZB

s
ZL

s
Zxp

s

ZG
s

…

Pool embedding (mean)

Contrastive loss:  Z{xp,L,B} & Zpool

Zpool



Modality encoders: contrastive loss

Xs
Lamost

Apogee
Boss

XP

Photometry


Gaia, 2Mass, …

Encoder
ZA

s
ZB

s
ZL

s
Zxp

s

ZG
s

…

Pool embedding (mean)

Contrastive loss:  Z{xp,L,B} & Zpool

Zpool

Goal: learn shared information 
across spectra, that’s (hopefully) 
invariant of detector systems 



Modality encoders: alignment loss

Xs
Lamost

Apogee
Boss

XP

Photometry


Gaia, 2Mass, …

Encoder
ZA

s
ZB

s
ZL

s
Zxp

s

ZG
s

…

Xr

ZA
r

ZB
r

ZL
r

Zxp
r

ZG
r

…

OT losses

…
…



Alignment via optimal transport

© POT: python optimal tranport (pythonot.github.io)

http://pythonot.github.io
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© POT: python optimal tranport (pythonot.github.io)

Exact solution Weak solution

http://pythonot.github.io


Alignment via optimal transport

Exact (c) Gromov-Wasserstein Gu et al. (2022)
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Alignment via optimal transport & key points

Exact (c) Gromov-Wasserstein Gu et al. (2022)

Gu et al. (2022)



Modality encoders: alignment loss

Xs
Lamost

Apogee
Boss

XP

Photometry


Gaia, 2Mass, …

Encoder
ZA

s
ZB

s
ZL

s
Zxp

s

ZG
s

…

Xr

ZA
r

ZB
r

ZL
r

Zxp
r

ZG
r

…

OT(GW) losses

…
…



Additional pair constraint

Xs
Lamost

Apogee
Boss

XP

Photometry


Gaia, 2Mass, …

Encoder
ZA

s
ZB

s
ZL

s
Zxp

s

ZG
s

…

Xr

ZA
r

ZB
r

ZL
r

Zxp
r

ZG
r

…

Keypoint-Guided OT

…
…

Xs−r



Final model

θ

X

Loss

ZA

Zpool

Zphot

+ℒC + ℒOT + ℒR−S

Transformer Diffusion(θ, Z)



Forward model



Clusters/young stars Milky Way model

• galaxia code

• thin+thick+halo+bulge

Nstars

θC

θS θS



Fwd model

Specta

Instrument resp.

TeffL MS

GBPGRPG KHJ

X

plx

Dust
Filter convolve



Fwd model

Specta

Instrument resp.

TeffL MS

GBPGRPG KHJ

X

plx

Dust
Filter convolve



Model differences (BaSeL)



Model differences (BTSettl)



Model differences (Kurucz)



Results



Pilot study

Train NPE on PARSEC 
Gaia+2MASS+Wise 
photometry + plx + Av



Pilot study: NPE
Classic SBI, no missing data



Updated pipeline + 50% missing + XP spectra
Posterior mean sim



Without DA



With DA



Predictions
Posterior mean simPosterior mean real Posterior mean real

with domain adaptionno domain adaption



Summary

• Combine flow matching + transformer model to learn 
arbitrary conditionals and marginals


• Add OT + pair + contrastive loss to close domain gap


• Obtain promising results on simulations



Thank you!



Backup



YSO models



Fwd model: YSO (Robitaille17+Richardson+24)

TeffL MS

GBPGRPG KHJ

X

plx

• Mass not input parameter

• Unlink to evo. tracks 

➡ logg = 4

➡ Small impact for 

 kK


• Low resolution (R~15)

Teff ∈ [3,20]
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Fwd model: YSO (Robitaille17+Richardson+24)
TeffL MS

GBPGRPG KHJ

X

plx

• Mass not input parameter

• Unlink to evo. tracks 

➡ logg = 4

➡ Small impact for 

 kK


• Low resolution (R~15)


• Introduces many additional 
parameters

Teff ∈ [3,20] TeffL MS

GBPGRPG KHJ

X

plx

tC ZC MC

MS

Tefflogg L R

Nstars

G
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YSO (Robitaille17+Richardson+24)







YSO (Robitaille17+Richardson+24)


