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Gaia data



Pleiades (c) ESO/S. Brunier

Stellar populations
Born from same molecular cloud


• Thought to be birthplace of most stars                                
(Lada & Lada 2003; Parker & Goodwin 2007)


• Structure formation and evolution


• Chemical composition of Milky Way


• Exoplanet formation and evolution


• Stellar initial mass function

Probe for …



M80 (c) Hubble Heritage Team Pleiades (c) ESO/S. Brunier ESA Gaia, DPAC - Moitinho+2017



Identifying stellar populations

• Low dimensional feature space

Problem definition

3 positional axes  +  2 tangential velocities

Stars that move together were born together 

(Kamdar+2019)
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Tidal tails (Meingast+2019a), Streams (Meingast+2019b), Strings (Kounkel+2019),

Rings (Cantat-Gaudin+2019), Snakes (Tian+2020), Pearls (Coronado+2021), …
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Identifying stellar populations
Problem definition

➡ Nonparametric, density based clustering

• Low dimensional feature space

• Projection effects in velocities

• Millions to billions of data points 

• 95 — 99% noise

• Wide variety of (non-convex) cluster morphologies 

• No accurate simulations / forward models 



Recap: Density based clustering
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Nonparametric, density-based clustering

• Level set: 


• Hartigan (1975) cluster definition 
‣ Connected components of 

‣ Cluster tree: vary : 

L(λ) = {f(x) ≥ λ}

L(λ)
λ ∞ → − ∞

Problem definition



Reality: 
Estimate density from data
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Pruning cluster tree

• Density difference                    
(Chazal+2013)


• Normalised                                    
(Ding+2016)


• Distance based                           
(Stuetzle+2010; Kpotufe+2011; Chaudhuri+2014)


• Relative excess of mass                
(HDBSCAN; Campello+2013)
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Pruning cluster tree

• Density difference                    
(Chazal+2013)


• Normalised                                    
(Ding+2016)


• Distance based                           
(Stuetzle+2010; Kpotufe+2011; Chaudhuri+2014)


• Relative excess of mass                
(HDBSCAN; Campello+2013)

Δ ̂f

Δ ̂f

̂f

Current strategies

Hard to determine  
threshold for N ≫ 1

Typically over-merges



Going back to Wishart (1969) 
Clusters are modes of f



What constitutes a cluster?

Clusters are modal regions of 


➡ Test for multimodality 
f



What constitutes a cluster?

Clusters are modal regions of 


➡ Test for multimodality 

: Points belong to single mode


: Points belong to multiple modes 

f

H0

H1



Modality along paths



Multiple modes: density dip along path
f(r0)

f(r1)

H1 : ∃t | f(rt) < min{f(r0), f(r1)}



Single mode: no density dip

f(r0)

f(r1)

H0 : ∄t | f(rt) < min{f(r0), f(r1)}
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H0 : ∄t | f(rt) < min{f(r0), f(r1)}

T(t) := min{log f(r0), log f(r1)} − log f(rt)

H0 : T(t) ≤ 0 ∀t ∈ (0,1)



Let’s apply: H0 : T(t) ≤ 0 ∀t ∈ (0,1)f



On estimated density?



Let’s apply: H0 : T(t) ≤ 0 ∀t ∈ (0,1)̂f



f → ̂f : T(t) → ̂T(t)
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Multimodality test statistic: 

T(t) := min{log f(r0), log f(r1)} − log f(rt)

k-NN density estimator

Burman & Polonik (2009) show    H0 : ̂T(t) ∼ 𝒩(0,1) × c

̂f(x) ∝
1

dp
k (x)

̂T(t) := − p max{log dk(r0), log dk(r1)} + p log dk(rt)

̂T(t)



Let’s test it!



Let’s apply: ̂f H1 : ̂Tn(t) > Φ−1(1 − α) ?
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Let’s apply: H0 : ̂Tn(t) ≤ Φ−1(1 − α)̂f ?



Let’s apply: H0 : ̂Tn(t) ≤ Φ−1(1 − α)̂f

k = 10



Putting it all together



Clustering pipeline: SigMA
1. Gradient ascent step — cluster tree

̂f
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2. Scan saddle points: max ̂f → min ̂f

̂f

Clustering pipeline: SigMA
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H0
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Next saddle point

Clustering pipeline: SigMA



1. Gradient ascent step


2. Scan saddle points: 


A. Test modality between modes
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max ̂f → min ̂f

H0
̂f

Clustering pipeline: SigMA



How to set parameters?
SigMA(k, )α



Choosing k
 ̂Tn(t) ∼ 𝒩(0,1) ⟺ log N < k < N4/(4+p)



Choosing α

• Many hypotheses tests increases chance of false positives


• Limit proportion of false positives among all positives


‣ Apply Benjamini & Hochberg procedure


➡ Data driven way of choosing significance α



Results on Sco-Cen



Application to Sco-Cen OB association



Application to Sco-Cen OB association

Consists of 37 groups


• Unseen substructure


Validated via


• narrow HRD


• B stars in center



Application to Sco-Cen OB association

• High spatial resolution 
age map


• Investigate SF 
history



Thank you!



Backup



Time complexity

𝒪(p N log N) + 𝒪(p N log N) + 𝒪(N k) + 𝒪( |𝒮 | )

Density computation 

(k-d tree)

Graph construction

mode & saddle 

search (union find)

Cluster tree 
pruning



Robustness of ̂Tn(t)

-2   -1  0   1    2 -2   -1  0   1    2 -2   -1  0   1    2

N

k

Graph

-Skeletonβ

Feature scaling



Application to Sco-Cen OB association

Consists of 37 groups


• Unseen substructure


Validated via


• narrow HRD


• B stars in center


• Age gradients



Background reduction



Background reduction


