# Significance Mode Analysis for hierarchical structures **Extracting stellar populations from large-scale surveys**

Sebastian Ratzenböck @ Uni Vienna

ML-IAP/CCA-2023



# Gaia data





## Stellar populations Born from same molecular cloud

- Thought to be birthplace of most stars (Lada & Lada 2003; Parker & Goodwin 2007)
- Structure formation and evolution
- Chemical composition of Milky Way
- Exoplanet formation and evolution
- Stellar initial mass function

#### Probe for ....

Pleiades (c) ESO/S. Brunier





ESA Gaia, DPAC - Moitinho+2017

Pleiades (c) ESO/S. Brunier



 Low dimensional feature space 3 positional axes + 2 tangential velocities Stars that move together were born together (Kamdar+2019)



- Low dimensional feature space
- Projection effects in velocities















- Low dimensional feature space
- Projection effects in velocities
- Millions to billions of data points

S

- Low dimensional feature space
- Projection effects in velocities
- Millions to billions of data points
- 95 99% noise

ts

- Low dimensional feature space
- Projection effects in velocities
- Millions to billions of data points
- 95 99% noise
- Wide variety of (non-convex) cluster morphologies

Tidal tails (Meingast+2019a), Streams (Meingast+2019b), Strings (Kounkel+2019), Rings (Cantat-Gaudin+2019), Snakes (Tian+2020), Pearls (Coronado+2021), ...







- Low dimensional feature space
- Projection effects in velocities
- Millions to billions of data points
- 95 99% noise
- Wide variety of (non-convex) cluster morphologies No accurate simulations / forward models



- Low dimensional feature space
- Projection effects in velocities
- Millions to billions of data points
- 95 99% noise
- Wide variety of (non-convex) cluster morphologies No accurate simulations / forward models



Nonparametric, density based clustering

# Recap: Density based clustering

• Data set  $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$ 



- Data set  $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$
- Data generated from density:  $X \sim f$





- Data set  $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$
- Data generated from density:  $X \sim f$
- Wishart (1969) cluster definition
  - $\mathbf{X}_i$  associated with modes of f
  - Propagate  $\mathbf{x}_i$  along  $\nabla f$

50

40 30 20 10 10 20 30 40 0 Х



- Data set  $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$
- Data generated from density:  $X \sim f$
- Wishart (1969) cluster definition
  - $\mathbf{X}_i$  associated with modes of f
  - Propagate  $\mathbf{x}_i$  along  $\nabla f$

50

40 30 20 10 10 40 20 30 0 X



- Data set  $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$
- Data generated from density:  $X \sim f$
- Wishart (1969) cluster definition
  - $\mathbf{X}_i$  associated with modes of f
  - Propagate  $\mathbf{x}_i$  along  $\nabla f$



- Data set  $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$
- Data generated from density:  $X \sim f$
- Wishart (1969) cluster definition
  - $\mathbf{X}_i$  associated with modes of f
  - Propagate  $\mathbf{x}_i$  along  $\nabla f$



- Data set  $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$
- Data generated from density:  $X \sim f$
- Wishart (1969) cluster definition
  - $\mathbf{X}_i$  associated with modes of f
  - Propagate  $\mathbf{x}_i$  along  $\nabla f$



- Data set  $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$
- Data generated from density:  $X \sim f$
- Wishart (1969) cluster definition
  - $\mathbf{X}_i$  associated with modes of f
  - Propagate  $\mathbf{x}_i$  along  $\nabla f$





- Data set  $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$
- Data generated from density:  $X \sim f$
- Wishart (1969) cluster definition
  - $\mathbf{X}_i$  associated with modes of f
  - Propagate  $\mathbf{x}_i$  along  $\nabla f$





20

Х

30

- Data set  $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, x_i \in \mathbb{R}^p$
- Data generated from density:  $X \sim f$
- Wishart (1969) cluster definition
  - $\mathbf{X}_i$  associated with modes of f
  - Propagate  $\mathbf{x}_i$  along  $\nabla f$

50

40 30 20 10 40 10 20 30 0 X



- Level set:  $L(\lambda) = \{f(\mathbf{x}) \ge \lambda\}$
- Hartigan (1975) cluster definition
  - Connected components of  $L(\lambda)$
  - Cluster tree: vary  $\lambda: \infty \to -\infty$





- Estimate density  $\hat{f}$  from data X
- produces spurious clusters



- Estimate density  $\hat{f}$  from data X
- produces spurious clusters



Estimate density *f̂* from data *X* ➡ produces spurious clusters





• Estimate density  $\hat{f}$  from data X $\Rightarrow$  produces spurious clusters



![](_page_27_Figure_3.jpeg)

![](_page_28_Picture_2.jpeg)

#### Pruning cluster tree Current strategies

- Density difference  $\Delta \hat{f}$ (Chazal+2013)
- Normalised  $\Delta \hat{f}$ (Ding+2016)
- Distance based (Stuetzle+2010; Kpotufe+2011; Chaudhuri+2014)
- Relative excess of mass (HDBSCAN; Campello+2013)

![](_page_29_Picture_5.jpeg)

![](_page_29_Picture_6.jpeg)

## Pruning cluster tree Current strategies

Density difference  $\Delta \hat{f}$ (Chazal+2013)

Normalised  $\Delta \hat{f}$ (Ding+2016)

Hard to determine threshold for  $N \gg 1$ 

Distance based (Stuetzle+2010; Kpotufe+2011; Chaudhuri+2014)

Relative excess of mass (HDBSCAN; Campello+2013)

**Typically over-merges** 

![](_page_30_Picture_8.jpeg)

# Going back to Wishart (1969) Clusters are modes of f

![](_page_31_Picture_1.jpeg)

## What constitutes a cluster?

# Clusters are modal regions of fTest for multimodality

![](_page_32_Figure_3.jpeg)

## What constitutes a cluster?

# Clusters are modal regions of *f* → Test for multimodality

 $H_0$ : Points belong to single mode 20- $H_1$ : Points belong to multiple modes 10-

![](_page_33_Figure_3.jpeg)

# Modality along paths

![](_page_35_Figure_0.jpeg)




#### **Nultimodality test statistic**

#### $H_0: \nexists t | f(r_t) < \min\{f(r_0), f(r_1)\}$

#### $T(t) := \min\{\log f(r_0), \log f(r_1)\} - \log f(r_t)\}$

#### **Multimodality test statistic**

#### $H_0: \nexists t \mid f(r_t) < \min\{f(r_0), f(r_1)\}$

#### $T(t) := \min\{\log f(r_0), \log f(r_1)\} - \log f(r_t)$

 $H_0: T(t) \le 0 \quad \forall t \in (0,1)$ 



#### $H_0: T(t) \le 0 \quad \forall t \in (0,1)$









## On estimated density?

### Let's apply: $\hat{f}$



#### $H_0: T(t) \le 0 \quad \forall t \in (0,1)$









 $f \to \hat{f} : T(t) \to \hat{T}(t)$ 



## Multimodality test statistic: $\hat{T}(t)$

#### $T(t) := \min\{\log f(r_0), \log f(r_1)\} - \log f(r_t)\}$





## Multimodality test statistic: $\hat{T}(t)$ $T(t) := \min\{\log f(r_0), \log f(r_1)\} - \log f(r_t)\}$ $\hat{T}(t) := -p \max\{\log d_k(r_0), \log d_k(r_1)\} + p \log d_k(r_t)$

# Multimodality test statistic: $\hat{T}(t)$ $T(t) := \min\{\log f(r_0), \log f(r_1)\} - \log f(r_t)$ $\hat{f}(x) \propto \frac{1}{d_k^p(x)}$ k-NN density estimator $\hat{T}(t) := -p \max\{\log d_k(r_0), \log d_k(r_1)\} + p \log d_k(r_t)$

Burman & Polonik (2009) show  $H_0: \hat{T}(t) \sim \mathcal{N}(0,1) \times c$ 



## Let's test it!



 $H_1: \hat{T}_n(t) > \Phi^{-1}(1-\alpha)$  ?







 $H_1: \hat{T}_n(t) > \Phi^{-1}(1-\alpha)$ 







 $H_0: \hat{T}_n(t) \le \Phi^{-1}(1-\alpha)$  ?







 $H_0: \hat{T}_n(t) \le \Phi^{-1}(1-\alpha)$ 





## Putting it all together

#### 1. Gradient ascent step — cluster tree





- 1. Gradient ascent step
- 2. Scan saddle points:  $\max \hat{f} \rightarrow \min \hat{f}$





- 1. Gradient ascent step
- 2. Scan saddle points:  $\max \hat{f} \rightarrow \min \hat{f}$ 
  - A. Test modality between modes



Min. energy path Arbitrary path Saddle point

- 1. Gradient ascent step
- 2. Scan saddle points:  $\max \hat{f} \rightarrow \min \hat{f}$ 
  - A. Test modality between modes
  - B. If  $H_0$  cannot be rejected merge



Min. energy path --- Arbitrary path Saddle point

- Gradient ascent step
- 2. Scan saddle points:  $\max \hat{f} \rightarrow \min \hat{f}$ 
  - A. Test modality between modes
  - B. If  $H_0$  cannot be rejected merge





#### Next saddle point



- 1. Gradient ascent step



# How to set parameters?

 $SigMA(k, \alpha)$ 

## Choosing k $\hat{T}_n(t) \sim \mathcal{N}(0,1) \iff \log N < k < N^{4/(4+p)}$





#### Choosing a

- Many hypotheses tests increases chance of false positives
- Limit proportion of false positives among all positives
  - Apply Benjamini & Hochberg procedure
  - $\blacktriangleright$  Data driven way of choosing significance  $\alpha$

## **Results on Sco-Cen**







30°

20°

10°

10°

-20

Consists of 37 groups • Unseen substructure Validated via • narrow HRD

• B stars in center





40°

30°

20°

10°

0°

-10°

-20

- High spatial resolution age map
  - Investigate SF history







# Backup

#### I me complexity

#### mode & saddle Density computation search (union find) (k-d tree) $\mathcal{O}(pN\log N) + \mathcal{O}(pN\log N) + \mathcal{O}(Nk) + \mathcal{O}(|\mathcal{S}|)$ Graph construction Cluster tree prunina



## Robustness of $\hat{T}_n(t)$

Graph

N

k

 $\beta$ -Skeleton

Feature scaling



-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

- Consists of 37 groups
- Unseen substructure
- Validated via
- narrow HRD
- B stars in center
- Age gradients



#### **Background reduction**



 $\rho \rightarrow$ 

#### **Background reduction**



 $\rho \rightarrow$ 



Likelihood of samples under model k-NN density estimation

